138
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Phenol and benzoic acid recovery from end-of-life of polysulfone ultrafiltration membranes and its thermochemical kinetic behaviour

, , , , &
Pages 6043-6061 | Received 20 Mar 2023, Accepted 02 May 2023, Published online: 15 May 2023

References

  • http://commonorganicchemistry.com/Common_Reagents/N-Methyl-2-pyrrolidone/N-Methyl-2-pyrrolidone.htm
  • https://www.chemicalbook.com/ChemicalProductProperty_EN_CB4209342.htm
  • Abdelnaby, M. A., J. Eimontas, and N. Striūgas. 2021a. Influence of carbon black filler on pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of glass fibre reinforced polymer composites. Energy. doi:10.1016/j.energy.2021.121167.
  • Abdelnaby, M. A., J. Eimontas, and N. Striūgas. 2021b. Pyrolysis and gasification kinetic behavior of mango seed shells using TG-FTIR-GC–MS system under N2 and CO2 atmospheres. Renewable Energy. doi:10.1016/j.renene.2021.04.034.
  • Abdelnaby, M. A., J. Eimontas, and N. Striūgas. 2021c. Pyrolysis kinetic behaviour and TG-FTIR-GC-MS analysis of Coronavirus face masks. Journal of Analytical and Applied Pyrolysis 156. doi:10.1016/j.jaap.2021.105118.
  • Abdelnaby, M. A., J. Eimontas, and N. Striūgas. 2022. Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis. Energy. doi:10.1016/j.energy.2021.122070.
  • Ali Abdelnaby, M. 2022. Justas Eimontas, Nerijus Striūgas, a new strategy for butanol extraction from COVID-19 mask using catalytic pyrolysis process over ZSM-5 zeolite catalyst and its kinetic behavior. Thermochimica Acta 718. doi:10.1016/j.tca.2022.179198.
  • Alongi, J., G. Camino, and G. Malucelli. 2013. Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics. Carbohydrate Polymers 92 (2):1327–34. doi:10.1016/j.carbpol.2012.10.029.
  • Azizi, A., E. A. Feijani, Z. Ghorbani, and A. Tavasoli. 2021. Fabrication and characterization of highly efficient three component CuBTC/graphene oxide/PSF membrane for gas separation application. International Journal of Hydrogen Energy 46 (2):2244–54. doi:10.1016/j.ijhydene.2020.10.025.
  • Belbessai, S., E.H. Benyoussef, and F. Gitzhofer. 2022. Nicolas Abatzoglou, Carbon nanomaterial production using waste plastic pyrolysis over a new catalyst made from mining residues: Effect of plastic type. Chemical Engineering Journal Advances 12:100424. doi:10.1016/j.ceja.2022.100424.
  • Bondam, A. F., D. Diolinda da Silveira, J. Pozzada dos Santos, and J. F. Hoffmann. 2022. Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends in Food Science & Technology 123:172–86. doi:10.1016/j.tifs.2022.03.013.
  • Cai, J., and S. Chen. 2009. A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree. Journal of Computational Chemistry 30 (13):1986–91. doi:10.1002/jcc.21195.
  • Chhabra, V., S. Bhattacharya, and Y. Shastri. 2019. Pyrolysis of mixed municipal solid waste: Characterisation, interaction effect and kinetic modelling using the thermogravimetric approach. Waste Management 90:152–67. doi:10.1016/j.wasman.2019.03.048.
  • Cudjoe, D. 2022. Hong Wang, Plasma gasification versus incineration of plastic waste: Energy, economic and environmental analysis. Fuel Processing Technology 237:107470. doi:10.1016/j.fuproc.2022.107470.
  • Dai, Y. -N., R. Tao, Y. -P. Tai, N.F.Y. Tam, D. Dan, and Y. Yang. 2017. Application of a full-scale newly developed stacked constructed wetland and an assembled bio-filter for reducing phenolic endocrine disrupting chemicals from secondary effluent. Ecological Engineering 99:496–503. doi:10.1016/j.ecoleng.2016.11.007.
  • Eimontas, J., I. Stasiulaitiene, K. Zakarauskas, and N. Striūgas. 2023. An eco-friendly strategy for recovery of H2-CH4-rich syngas, benzene-rich tar and carbon nanoparticles from surgical mask waste using an updraft gasifier system. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects. doi:10.1080/15567036.2023.2207507.
  • Eimontas, J., & N. Striūgas. 2022. Catalytic pyrolysis and kinetic study of glass fibre-reinforced epoxy resin over CNTs, graphene and carbon black particles/ZSM-5 zeolite hybrid catalysts. Journal of Thermal Analysis and Calorimetry. doi:10.1007/s10973-022-11776-9.
  • Eimontas, J., N. Striūgas, and M. A. Abdelnaby. 2021. Catalytic pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of waste fishing nets over ZSM-5 zeolite catalyst for caprolactam recovery. Renewable Energy 179:1385–403. doi:10.1016/j.renene.2021.07.143.
  • Eimontas, J., N. Striūgas, and M. A. Abdelnaby. 2022. Effect of aluminum leaching pretreatment on catalytic pyrolysis of metallised food packaging plastics and its linear and nonlinear kinetic behaviour. The Science of the Total Environment 844:157150. doi:10.1016/j.scitotenv.2022.157150.
  • Eimontas, J., K. Zakarauskas, and N. Striūgas. 2021. Microcrystalline paraffin wax, biogas, carbon particles and aluminum recovery from metallised food packaging plastics using pyrolysis, mechanical and chemical treatments. Journal of Cleaner Production. doi:10.1016/j.jclepro.2021.125878.
  • Farghaly, F. A., H. K. Salam, A. M. Hamada, and A. A. Radi. Jul 1 2022. Alleviating excess boron stress in tomato calli by applying benzoic acid to various biochemical strategies. Plant Physiology & Biochemistry 182:216–26. Epub 2022 Apr 26. PMID: 35526419. doi:10.1016/j.plaphy.2022.04.019.
  • Fernandez, A., P. Sette, M. Echegaray, J. Soria, D. Salvatori, G. Mazza, and R. Rodriguez. 2022. Clean recovery of phenolic compounds, pyro-gasification thermokinetics, and bioenergy potential of spent agro-industrial bio-wastes. Biomass Conversion and Biorefinery. doi:10.1007/s13399-021-02197-z.
  • Gao, L., and J. L. Goldfarb. 2019. Solid waste to biofuels and heterogeneous sorbents via pyrolysis of wheat straw in the presence of fly ash as an in situ catalyst. Journal of Analytical and Applied Pyrolysis 137:96–105. doi:10.1016/j.jaap.2018.11.014.
  • Guclu, S., N. Kizildag, B. Dizman, and S. Unal. 2022. Solvent-based recovery of high purity polysulfone and polyester from end-of-life reverse osmosis membranes. Sustainable Materials and Technologies 31:e00358. doi:10.1016/j.susmat.2021.e00358.
  • Huanhuan, W., H. Zhao, Y. Lin, X. Liu, H. Yao, Y. Lixin, H. Wang, and X. Wang. 2022. Fabrication of polysulfone membrane with sponge-like structure by using different non-woven fabrics. Separation and Purification Technology. doi:10.1016/j.seppur.2022.121553.
  • Jeswani, H., C. Krüger, M. Russ, M. Horlacher, F. Antony, S. Hann, and A. Azapagic. 2021. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. The Science of the Total Environment 769:144483. doi:10.1016/j.scitotenv.2020.144483.
  • Jiantao, L., B. Sun, F. Lin, W. Tian, B. Yan, Song, Y., Chen, G., He, C. 2022. Transformation and regulation of nitrogen and sulfur during pyrolysis of oily sludge with N/S model compounds, Fuel, doi:10.1016/j.fuel.2022.124651.
  • Kazak, O., Y. R. Eker, and A. Tor. 2020. In-situ magnetization of porous carbon beads by pyrolysis of waste red mud doped polysulfone beads for efficient oil sorption. Chemical Engineering & Processing - Process Intensification 158:108190. doi:10.1016/j.cep.2020.108190.
  • Khan, A., S. F. Ali Shah, K. Majeed, I. Hameed, M. Najam, M. Hasan, M. Ullah, M. S. Khan, Z. Ahmad, and M. S. Akhtar. Oct. 2022. Polymeric membranes for environmental remediation: A product space model perspective. Chemosphere 304:135236. doi: 10.1016/j.chemosphere.2022.135236.
  • Kiminaitė, I., J. Eimontas, N. Striūgas, and M. A. Abdelnaby. 2022. Catalytic pyrolysis kinetic behaviour of glass fibre-reinforced epoxy resin composites over ZSM-5 zeolite catalyst. Fuel. doi:10.1016/j.fuel.2022.123235.
  • Kiminaitė, I., J. Eimontas, N. Striūgas, and M. Ali Abdelnaby. 2022. Recovery of phenol and acetic acid from glass fibre reinforced thermoplastic resin using catalytic pyrolysis process on ZSM-5 zeolite catalyst and its kinetic behaviour. Thermochimica Acta 718. doi:10.1016/j.tca.2022.179293.
  • Liang, L., A. Veksha, M. Z. B. Mohamed Amrad, S. A. Snyder, and G. Lisak. 2021. Upcycling of exhausted reverse osmosis membranes into value-added pyrolysis products and carbon dots. Journal of Hazardous Materials 419:126472. doi:10.1016/j.jhazmat.2021.126472.
  • Li, Z., G. Liu, and R. Zhang. 2021. Heat transfer to supercritical hydrocarbon fuel in horizontal tube: Effects of near-wall pyrolysis at high heat flux. Chemical Engineering Science 229:115994. doi:10.1016/j.ces.2020.115994.
  • Loría-Bastarrachea, M. I., W. Herrera-Kao, J. V. Cauich-Rodríguez, J. M. Cervantes-Uc, H. Vázquez-Torres, and A. Ávila-Ortega. 2011. A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). Journal of Thermal Analysis and Calorimetry 104 (2):737–42. doi:10.1007/s10973-010-1061-9.
  • Maiti, A., and A. Pandey. 2022. Polymer and Waste Plastic in Membranes. Encyclopedia of Materials: Plastics and Polymers. doi:10.1016/b978-0-12-820352-1.00157-7.
  • Mirkarimi, S. M. R., S. Bensaid, and D. Chiaramonti. 2022. Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review. Applied Energy 327:120040. doi:10.1016/j.apenergy.2022.120040.
  • Mohamed, A. 2023. Vidas Makarevicius, GNs/MOF-based mixed matrix membranes for gas separations. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2023.02.074.
  • Mohamed, A., T. Hashem, and M. A. Abdelnaby. 2021. Microstructure and modeling of uniaxial mechanical properties of Polyethersulfone nanocomposite ultrafiltration membranes. International Journal of Mechanical Sciences 204:106568. doi:10.1016/j.ijmecsci.2021.106568.
  • Mohamed, A., A. Makarevicius, V. Tonkonogovas, and A. Stankevičius. 2022. High performance of PES-GNs MMMs for gas separation and selectivity. Arabian Journal of Chemistry 15 (2):103565. doi:10.1016/j.arabjc.2021.103565.
  • Mohamed, A., S. Tuckute, S. Tuckute, A. Tonkonogovas, and A. Stankevičius. 2023. Andrius Tonkonogovas, Arūnas Stankevičius, Gas permeation and selectivity of polysulfone/carbon non-woven fabric membranes with sponge and finger-like structures. Process Safety & Environmental Protection 171:630–39. doi:10.1016/j.psep.2023.01.055.
  • Mohamed, A., S. Yousef, A. Tonkonogovas, A. Stankevičius, and A. Baltušnikas. 2023. Andrius Tonkonogovas, Arūnas Stankevičius, Arūnas Baltušnikas, Fabrication of high-strength graphene oxide/carbon fiber nanocomposite membranes for hydrogen separation applications. Process Safety & Environmental Protection 172:941–49. doi:10.1016/j.psep.2023.03.002.
  • Molnár, G., A. Botvay, L. Pöppl, K. Torkos, J. Borossay, Á. Máthé, and T. Török. 2005. Thermal degradation of chemically modified polysulfones. Polymer Degradation & Stability 89 (3):410–17. doi:10.1016/j.polymdegradstab.2005.01.031.
  • Mortezaeikia, V., O. Tavakoli, and M. S. Khodaparasti. 2021. A review on kinetic study approach for pyrolysis of plastic wastes using thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis 160:105340. doi:10.1016/j.jaap.2021.105340.
  • Mumladze, T., S. Yousef, M. Tatariants, R. Kriukiene, V. Makarevicius, S. I. Lukošiute, R. Bendikiene, and G. Denafas. 2018. Sustainable approach to recycling of multilayer flexible packaging using switchable hydrophilicity solvents. Green Chemistry. doi:10.1039/c8gc01062e.
  • Onbattuvelli, V. P., R. K. Enneti, J. Simonsen, K. H. Kate, V. K. Balla, and S. V. Atre. 2020. Structure and thermal stability of cellulose nanocrystal/polysulfone nanocomposites. Materials Today Communications 22:100797. doi:10.1016/j.mtcomm.2019.100797.
  • Praspaliauskas, K., J. Eimontas, N. Striūgas, M. Zakarauskas, and M. A. Abdelnaby. 2020. Pyrolysis kinetic behavior and TG-FTIR-GC–MS analysis of metallised food packaging plastics. Fuel. doi:10.1016/j.fuel.2020.118737.
  • Sarwar, Z., J. Šereika, N. Striugas, E. Krugly, P. P. Danilovas, and D. Martuzevicius. 2020. A new industrial technology for mass production of graphene/peba membranes for CO2/CH4 selectivity with high dispersion, thermal and mechanical performance. Polymers. doi:10.3390/POLYM12040831.
  • Šereika, J., A. Tonkonogovas, T. Hashem, and A. Mohamed. 2021. CO2/CH4, CO2/N2 and CO2/H2 selectivity performance of PES membranes under high pressure and temperature for biogas upgrading systems. Environmental Technology & Innovation. doi:10.1016/j.eti.2020.101339.
  • Sharif, H. M. A., N. Mahmood, S. Wang, I. Hussain, Y. N. Hou, L. H. Yang, X. Zhao, and B. Yang. 2021. Recent advances in hybrid wet scrubbing techniques for NOx and SO2 removal: State of the art and future research. Chemosphere 273 (Jun):129695. doi:10.1016/j.chemosphere.2021.129695.
  • Striūgas, N., & J. Eimontas. 2022. Pyrolysis kinetic behaviour, TG-FTIR, and GC/MS analysis of cigarette butts and their components. Biomass Conv Bioref. doi:10.1007/s13399-022-02698-5.
  • Striugas, J., N. Eimontas, and M. A. Abdelnaby. 2020. Modeling of metalized food packaging plastics pyrolysis kinetics using an independent parallel reactions kinetic model. Polymers 12 (8). doi:10.3390/polym12081763.
  • Striūgas, N., J. Eimontas, and M. A. Abdelnaby. 2022. Thermal decomposition of CNTs and graphene-reinforced glass fibers/epoxy and their kinetics. Biomass Conversion and Biorefinery. doi:10.1007/s13399-022-02341-3.
  • Striūgas, J., N. Eimontas, A. Mohamed, and M. A. Abdelnaby. 2021. Pyrolysis kinetic behaviour and TG-FTIR-GC-MS analysis of Coronavirus Face Masks. Journal of Analytical and Applied Pyrolysis 156. doi:10.1016/j.jaap.2021.105037.
  • Striūgas, N., J. Eimontas, M. Praspaliauskas, and M. A. Abdelnaby. 2021. Pyrolysis kinetic behaviour of glass fibre-reinforced epoxy resin composites using linear and nonlinear isoconversional methods. Polymers. doi:10.3390/polym13101543.
  • Subadra, S. P., J. Eimontas, N. Striūgas, and M. A. Abdelnaby. 2021. Thermal degradation and pyrolysis kinetic behaviour of glass fibre-reinforced thermoplastic resin by TG-FTIR, Py-GC/MS, linear and nonlinear isoconversional models. Journal of Materials Research and Technology. doi:10.1016/j.jmrt.2021.11.011.
  • Subadra, S. P., S. Tuckute, A. Baltušnikas, and E. L. Stasė-Irena Lukošiūtė. 2022. Arafa, Alaa Mohamed, Finite element analysis of fibreglass and carbon fabrics reinforced polyethersulfone membranes. Materials Today Communications. doi:10.1016/j.mtcomm.2022.103682.
  • Sun, J., J. Luo, M. Rui, J. Lin, and L. Fang. 2023. Effects of microwave and plastic content on the sulfur migration during co–pyrolysis of biomass and plastic. Chemosphere 314:137680. doi:10.1016/j.chemosphere.2022.137680.
  • Tatariants, M., J. Eimontas, N. Striūgas, M. A. Abdelnaby, S. Tuckute, and L. Kliucininkas. 2019. A sustainable bioenergy conversion strategy for textile waste with self-catalysts using mini-pyrolysis plant. Energy Conversion & Management. doi:10.1016/j.enconman.2019.06.050.
  • Tonkonogovas, A., S.I. Lukošiūtė, and A. Mohamed. 2023. Gas permeation and selectivity characteristics of sponge-like and finger-like structures of polysulfone membranes. Fuel 331. doi:10.1016/j.fuel.2023.128476.
  • Torres-Sciancalepore, R., D. Asensio, D. Nassini, A. Fernandez, R. Rodriguez, G. Fouga, and G. Mazza. 2022. Assessment of the behavior of Rosa rubiginosa seed waste during slow pyrolysis process towards complete recovery: Kinetic modeling and product analysis. Energy Conversion & Management 272:116340. doi:10.1016/j.enconman.2022.116340.
  • Torres-Sciancalepore, R., A. Fernandez, D. Asensio, M. Riveros, M. P. Fabani, G. Fouga, R. Rodriguez, and G. Mazza. 2022. Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds. Energy Conversion & Management 252:115076. doi:10.1016/j.enconman.2021.115076.
  • Tuckute, S., A. Tonkonogovas, A. Stankevičius, and A. Mohamed. 2021. Ultra-permeable CNTs/PES membranes with a very low CNTs content and high H2/N2 and CH4/N2 selectivity for clean energy extraction applications. Journal of Materials Research and Technology. doi:10.1016/j.jmrt.2021.10.125.
  • Van de Voorde, B., A. Katalagarianakis, S. Huysman, A. Toncheva, J. M. Raquez, I. Duretek, C. Holzer, L. Cardon, K. V. Bernaerts, D. Van Hemelrijck, et al. 2022. Effect of extrusion and fused filament fabrication processing parameters of recycled poly(ethylene terephthalate) on the crystallinity and mechanical properties. Additive Manufacturing 50:102518. doi:10.1016/j.addma.2021.102518.
  • Vyazovkin, S. 2001. Modification of the Integral Isoconversional Method to Account for Variation in the Activation Energy. Journal of Computational Chemistry.
  • Vyazovkin, S. 2018. Modern isoconversional kinetics: From misconceptions to advances. Handbook of Thermal Analysis and Calorimetry. doi:10.1016/B978-0-444-64062-8.00008-5.
  • Vyazovkin, S., A. K. Burnham, L. Favergeon, N. Koga, E. Moukhina, & L. A. PerezMaqueda. 2020. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta 689:178597. doi:10.1016/j.tca.2020.178597.
  • Wang, S., and Y. Shen. 2021. Particle-scale study of heat and mass transfer in a bubbling fluidised bed. Chemical Engineering Science 240:116655. doi:10.1016/j.ces.2021.116655.
  • Wang, B., F. Xu, P. Zong, J. Zhang, Y. Tian, and Y. Qiao. 2019. Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS. Renewable Energy 132:486–96. doi:10.1016/j.renene.2018.08.021.
  • Xie, W., S. Jing, X. Zhang, L. Tan, C. Wang, X. Yuan, and K. Wang. 2023. Investigating kinetic behavior and reaction mechanism on autothermal pyrolysis of polyethylene plastic. Energy 269:126817. doi:10.1016/j.energy.2023.126817.
  • Yen, H. Y., F. S. Lee, and M. H. Yang. 2003. Thermal degradation of polysulfones. VI: Evaluation of thermal pyrolysis of acrylonitrile-butadiene-styrene terpolymer. Polymer Testing. doi:10.1016/S0142-9418(02)00045-4.
  • Young Ryu, G., A. Seong Jin, Y. Somi, K. Jung Kim, H. Jae, D. Roh, and W. Seok Chi. 2022. Dual-sulfonated MOF/polysulfone composite membranes boosting performance for proton exchange membrane fuel cells. European Polymer Journal 184. doi:10.1016/j.eurpolymj.2022.111601.
  • Yousef, S., J. Eimontas, N. Striūgas, A. Mohamed, and M. Ali Abdelnaby. 2022. Pyrolysis kinetic behavior and TG-FTIR-GC–MS analysis of end-life ultrafiltration polymer nanocomposite membranes. Chemical Engineering Journal 428:131181. doi:10.1016/j.cej.2021.131181.
  • Yu, Y., Q. Han, H. Lin, S. Zhang, Q. Yang, and F. Liu. 2022. Fine regulation on hour-glass like spongy structure of polyphenylsulfone (PPSU)/sulfonated polysulfone (SPSf) microfiltration membranes via a vapor-liquid induced phase separation (V-LIPS) technique. Journal of Membrane Science 660:120872. doi:10.1016/j.memsci.2022.120872.
  • Zakarauskas, K., and J. Eimontas. 2022. Nerijus Striūgas, a new sustainable strategy for oil, CH4 and aluminum recovery from metallised food packaging plastics waste using catalytic pyrolysis over ZSM-5 zeolite catalyst. Thermochimica acta 718. doi:10.1016/j.tca.2022.179223.
  • Zeng, Q., Z. Wan, Y. Jiang, and J. Fortner. 2022. Enhanced polysulfone ultrafiltration membrane performance through fullerol Addition: A study towards optimization. Chemical Engineering Journal 431:134071. doi:10.1016/j.cej.2021.134071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.