129
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effect of surfactant on oil displacement efficiency of imbibition/huff and puff in low permeability reservoirs

, , ORCID Icon, &
Pages 6274-6289 | Received 06 Feb 2023, Accepted 10 May 2023, Published online: 19 May 2023

References

  • Alvarado, V., and E. Manrique. 2010. Enhanced oil recovery: An update review. Energies 3 (9):1529–75. doi:10.3390/en3091529.
  • Alvarez, J. O., I. W. R. Saputra, and D. S. Schechter. 2017. Potential of improving oil recovery with surfactant additives to completion fluids for the bakken. Energy & Fuels 31 (6):5982–94. doi:10.1021/acs.energyfuels.7b00573.
  • Alvarez, J. O., and D. S. Schechter. 2016. Application of wettability alteration in the exploitation of unconventional liquid resources. Petroleum Exploration and Development 43 (5):832–40. doi:10.1016/S1876-3804(16)30099-4.
  • Alvarez, J. O., and D. S. Schechter. 2017. Improving oil recovery in the Wolfcamp unconventional liquid reservoir using surfactants in completion fluids. Journal of Petroleum Science & Engineering 157:806–15. doi:10.1016/j.petrol.2017.08.004.
  • Babadagli, T., A. Al-Bemani, F. Boukadi, Al-Maamari, R. 2005. A laboratory feasibility study of dilute surfactant injection for the Yibal field, Oman. Journal of Petroleum Science & Engineering 48 (1):37–52. doi:10.1016/j.petrol.2005.04.005.
  • Benson, A. L. L., and C. R. Clarkson. 2022. Flowback rate-transient analysis with spontaneous imbibition effects. Journal of Natural Gas Science & Engineering 108:104830. doi:10.1016/j.jngse.2022.104830.
  • Cai, J. C., C. X. Li, K. P. Song, Zou, S. M., Yang, Z. M., Shen, Y. H., Meng, Q. B., Liu, Y. 2020. The influence of salinity and mineral components on spontaneous imbibition in tight sandstone. Fuel 269:117087. doi:10.1016/j.fuel.2020.117087.
  • Chen, H., H. Fan, Y. Zhang, Xu, X. G., Liu, T., Hou, Q. F. 2018. Investigations on the driving forces of the fluorocarbon surfactant-assisted spontaneous imbibition using thermogravimetric analysis (TGA). RSC Advances. 8(67):33823–8196. doi:10.1039/C8RA08423H.
  • Chen, Y. K., D. M. Zhi, J. H. Qin, Song, P., Zhao, H., Wang, F. Y. 2022. Experimental study of spontaneous imbibition and CO2 huff and puff in shale oil reservoirs with NMR. Journal of Petroleum Science & Engineering 209:109883. doi:10.1016/j.petrol.2021.109883.
  • Dou, Z., Y. Zhao, Y. B. Wei, Zhuang, C., Chen, Y. Q., Wang, J. G., Zhou, Z. F. 2022. Enhanced mass transfer between matrix and filled fracture in dual-porosity media during spontaneous imbibition based on low-field nuclear magnetic resonance. Journal of Hydrology 607:127521. doi:10.1016/j.jhydrol.2022.127521.
  • Fang, Y. J., E. L. Yang, S. L. Guo, Cui, C. Y., Zhou, C. C. 2022. Study on micro remaining oil distribution of polymer flooding in Class-II B oil layer of Daqing Oilfield. Energy 254 (Part C):124479. doi:10.1016/j.energy.2022.124479.
  • Feldmann, F., G. J. Strobel, S. K. Masalmeh, AlSumaiti, A. M., et al. 2020. An experimental and numerical study of low salinity effects on the oil recovery of carbonate rocks combining spontaneous imbibition, centrifuge method and coreflooding experiments. Journal of Petroleum Science & Engineering 190:107045. doi:10.1016/j.petrol.2020.107045.
  • Feng, L., and L. Xu. 2015. Implications of shale oil compositions on surfactant efficacy for wettability alteration.
  • Fu, T. F., T. Xu, M. J. Heap, Meredith, P. G., Yang, T. H., Mitchell, T. M., Nara, Y. 2021. Analysis of capillary water imbibition in sandstone via a combination of nuclear magnetic resonance imaging and numerical DEM modeling. Engineering Geology 285:106070. doi:10.1016/j.enggeo.2021.106070.
  • Gu, Y., W. L. Ding, M. Yin, Liu, J. S., Xiao, Z. K., Jiao, B. C., Shen, H. R. 2018. Study on pressure sensitivity of tight sandstone and its influence on reservoir characteristics. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects. 40(22):2671–77. doi:10.1080/15567036.2018.1503753.
  • Gu, X. Y., C. S. Pu, N. Khan, Wu, F. P., Huang, F. F., Xu, H. X. 2019. The visual and quantitative study of remaining oil micro-occurrence caused by spontaneous imbibition in extra-low permeability sandstone using computed tomography. Fuel 237:152–62. doi:10.1016/j.fuel.2018.09.014.
  • Hou, B., R. Jia, M. Fu, Huang, Y. Q., Wang, Y. F. 2019. Mechanism of wettability alteration of an oil-wet sandstone surface by a novel cationic gemini surfactant. Energy & Fuels. 33(5):4062–69. doi:10.1021/acs.energyfuels.9b00304.
  • Hou, X. Y., and J. J. Sheng. 2022. Experimental study on the imbibition mechanism of the Winsor type I surfactant system with ultra-low IFT in oil-wet shale oil reservoirs by NMR. Journal of Petroleum Science & Engineering 216:110785. doi:10.1016/j.petrol.2022.110785.
  • Huang, F. F., C. S. Pu, X. Y. Gu, Ye, Z. Q., Khan, N., An, J., Wu, F. P., Liu, J. 2021. Study of a low-damage efficient-imbibition fracturing fluid without flowback used for low-pressure tight reservoirs. Energy 222:119941. doi:10.1016/j.energy.2021.119941.
  • Huang, X., X. Y. Wang, M. Q. He, Zhang, Y., Su, Z. Z., Li, X., Yang, W. P., Lu, J. 2023. The influence of CO2 huff and puff in tight oil reservoirs on pore structure characteristics and oil production from the microscopic scale. Fuel 335:127000. doi:10.1016/j.fuel.2022.127000.
  • Hu, Y. B., R. T. Armstrong, I. Shikhov, Hung, T. T., Lee, B., Mostaghimi, P. 2020. Unsteady-State coreflooding monitored by positron emission tomography and X-ray computed tomography. SPE Journal 25 (01):242–52. doi:10.2118/195701-PA.
  • Iyi, D., Y. Balogun, B. Oyeneyin, Faisal, N. 2022. A numerical study of the effects of temperature and injection velocity on oil-water relative permeability for enhanced oil recovery. International Journal of Heat & Mass Transfer 191:122863. doi:10.1016/j.ijheatmasstransfer.2022.122863.
  • Jia, R. X., W. L. Kang, Z. Li, Yang, H. B. 2015. Ultra-low interfacial tension (IFT) zwitterionic surfactant for imbibition enhanced oil recovery (IEOR) in tight reservoirs. Journal of Molecular Liquids 368 (Part A):120734. doi:10.1016/j.molliq.2022.120734.
  • Kathel, P., and K. K. Mohanty. 2013. Wettability alteration in a tight oil reservoir. Energy & Fuels 27 (11):6460–68. doi:10.1021/ef4012752.
  • Liang, X. Y., F. J. Zhou, T. B. Liang, et al. 2020. Impacts of pore structure and wettability on distribution of residual fossil hydrogen energy after imbibition. International Journal of Hydrogen Energy 45 (29):14779–89. doi:10.1016/j.ijhydene.2020.03.208.
  • Li, Y., G. A. Pope, J. Lu, Churchwell, L. 2017. Scaling of Low-Interfacial-Tension Imbibition in Oil-Wet Carbonates. SPE Journal. 5(22):1349–61. doi:10.2118/179684-PA.
  • Liu, J., J. J. Sheng, and J. Tu. 2020. Effect of spontaneous emulsification on oil recovery in tight oil-wet reservoirs. Fuel 279:118456. doi:10.1016/j.fuel.2020.118456.
  • Liu, B., Y. Song, K. Zhu, P. Su, X. Ye, and W. Zhao. 2020. Mineralogy and element geochemistry of salinized lacustrine organic-rich shale in the middle Permian santanghu basin: Implications for paleoenvironment, provenance, tectonic setting and shale oil potential. Marine & Petroleum Geology 120:104569. doi:10.1016/j.marpetgeo.2020.104569.
  • Liu, B., J. Sun, Y. Zhang, J. He, X. Fu, L. Yang, J. Xing, and X. Zhao. 2021. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling sag, southern Songliao Basin, NE China. Petroleum Exploration and Development 48 (3):608–24. doi:10.1016/S1876-3804(21)60049-6.
  • Liu, B., H. Wang, X. Fu, Y. Bai, L. Bai, M. Jia, and B. He. 2019. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the upper cretaceous Qingshankou formation in the Gulong Sag, northern Songliao Basin, Northeast China. AAPG Bulletin 103:405–32. doi:10.1306/08031817416.
  • Liu, Y. K., C. Yang, J. F. Wang, Peng, P. A. 2022. New insights into hydration-induced creep behavior of shale: A comparison study of brittle black shale and clayey oil shale at micro-scale. Marine & Petroleum Geology 138:105554. doi:10.1016/j.marpetgeo.2022.105554.
  • Li, H. T., F. Xu, X. Q. He, Bai, L. 2020. Investigation the relationship between nuclear magnetic resonance and acoustic velocity for improving the evaluation of tight gas reservoirs. Energy Sources Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2020.1832629.
  • Li, S., S. L. Yang, X. Y. Gao, Wang, M. Y. 2022. Characteristics and mechanism of imbibition oil recovery in the ultra-low-permeability volcanic oil reservoir in the Santanghu Basin. Colloids and Surfaces A Physicochemical and Engineering Aspects 652:129838. doi:10.1016/j.colsurfa.2022.129838.
  • Meng, Q. B., L. T. Zhao, P. Li, Yang, F., Cai, J. C. 2022. Experiments and phase-field simulation of counter-current imbibition in porous media with different pore structure. Journal of Hydrology 608:27670. doi:10.1016/j.jhydrol.2022.127670.
  • Milter, J., and T. Austad. 1996. Chemical flooding of oil reservoirs 6. Evaluation of the mechanism for oil expulsion by spontaneous imbibition of brine with and without surfactant in water-wet, low-permeable, chalk material. Colloids and Surfaces A Physicochemical and Engineering Aspects 113 (3):269–78. doi:10.1016/0927-7757(96)03631-X.
  • Mirzaei, M., D. A. DiCarlo, and G. A. Pope. 2016. Visualization and analysis of surfactant imbibition into oil-wet fractured cores. SPE Journal 21 (01):101–11. doi:10.2118/166129-PA.
  • Peng, S., P. Shevchenko, P. Periwal, Reed, R. M. 2021. Water-oil displacement in shale: New insights from a comparative study integrating imbibition tests and multiscale imaging. SPE Journal. 26(05):3285–99. doi:10.2118/205515-PA.
  • Salam, A., and X. Y. Wang. 2022. An analytical solution on spontaneous imbibition coupled with fractal roughness, slippage and gravity effects in low permeability reservoir. Journal of Petroleum Science & Engineering 208 (Part C):109501. doi:10.1016/j.petrol.2021.109501.
  • Sang, Q., X. Y. Zhao, H. M. Liu, et al. 2022. Analysis of imbibition of n-alkanes in kerogen slits by molecular dynamics simulation for characterization of shale oil rocks. Petroleum Science 19 (3):1236–49. doi:10.1016/j.petsci.2022.01.005.
  • Schechter, D. S., D. Zhou Jr., and O. F. M. 1994. Low IFT drainage and imbibition. Journal of Petroleum Science & Engineering 11 (4):283–300. doi:10.1016/0920-4105(94)90047-7.
  • Sheng, J. J. 2015. Status of surfactant EOR technology. Petroleum 1 (2):97–105. doi:10.1016/j.petlm.2015.07.003.
  • Sun, Y. H., Z. Liu, Q. Li, Deng, S. H., Guo, W. 2019. Controlling groundwater infiltration by gas flooding for oil shale in situ pyrolysis exploitation. Journal of Petroleum Science & Engineering 179:444–54. doi:10.1016/j.petrol.2019.04.055.
  • Sun, F. R., Y. D. Yao, and X. F. Li. 2018. The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique. Energy 143:995–1005. doi:10.1016/j.energy.2017.11.028.
  • Sun, F. R., Y. D. Yao, G. Z. Li, and M. D. Dong. 2019. Transport behaviors of real gas mixture through nanopores of shale reservoir. Journal of Petroleum Science & Engineering 177:1134–41. doi:10.1016/j.petrol.2018.12.058.
  • Sun, F. R., Y. D. Yao, G. Z. Li, and W. Y. Liu. 2019. Simulation of real gas mixture transport through aqueous nanopores during the depressurization process considering stress sensitivity. Journal of Petroleum Science & Engineering 178:829–37. doi:10.1016/j.petrol.2019.02.084.
  • Sun, F. R., Y. D. Yao, G. Z. Li, S. K. Zhang, Z. M. Xu, Y. Shi, and X. F. Li. 2019. A slip-flow model for oil transport in organic nanopores. Journal of Petroleum Science & Engineering 172:139–48. doi:10.1016/j.petrol.2018.09.045.
  • Wang, J., Y. X. Huang, Y. Zhang, Zhou, F. J. 2020. Study of fracturing fluid on gel breaking performance and damage to fracture conductivity. Journal of Petroleum Science & Engineering 193:107443. doi:10.1016/j.petrol.2020.107443.
  • Wang, C., G. J. Qiu, X. L. Long, Wang, T. 2021. Hooked gemini viscoelastic surfactant based on linolenic oil for oil recovery and its various gel-breaking mechanisms. Journal of Petroleum Science & Engineering 204:108717. doi:10.1016/j.petrol.2021.108717.
  • Xiang, Z., N. Zhang, Y. M. Zhao, Pan, D. J., Feng, X. W., Xie, Z. Z. 2022. Experiment on the silica sol imbibition of low-permeability rock mass: With silica sol particle sizes and rock permeability considered. International Journal of Mining Science and Technology 32 (5):1009–19. doi:10.1016/j.ijmst.2022.07.003.
  • Xiao, L. X., J. R. Hou, Y. C. Wen, et al. 2022. Imbibition mechanisms of high temperature resistant microemulsion system in ultra-low permeability and tight reservoirs. Petroleum Exploration and Development 49 (6):1398–410. doi:10.1016/S1876-3804(23)60358-1.
  • Xu, D. R. 2021. Study on methods and mechanisms of enhanced imbibition efficiency for changqing tight oil reservoirs. China University of Petroleum;Beijing.
  • Xu, D., B. Bai, H. Wu, et al. 2019. Mechanisms of imbibition enhanced oil recovery in low permeability reservoirs: Effect of IFT reduction and wettability alteration. Fuel 244:110–19. doi:10.1016/j.fuel.2019.01.118.
  • Xu, R. L., T. K. Guo, X. J. Xue, et al. 2023. Numerical simulation of fracturing and imbibition in shale oil horizontal wells. Petroleum Science. doi:10.1016/j.petsci.2023.03.024.
  • Xu, J. C., H. T. Qin, H. Y. Li, et al. 2023. Enhanced gas production efficiency of class 1,2,3 hydrate reservoirs using hydraulic fracturing technique. Energy 263 (Part E):126003. doi:10.1016/j.energy.2022.126003.
  • Xu, R. Z., S. L. Yang, M. Li, et al. 2023. Experimental study on unstable imbibition characteristics of fracturing fluids at high pressures and temperatures in the tight continental reservoir. Geoenergy Science and Engineering 221:211362. doi:10.1016/j.geoen.2022.211362.
  • Xu, R. Z., S. L. Yang, Z. P. Xiao, et al. 2022. Quantitatively study on imbibition of fracturing fluid in tight sandstone reservoir under high temperature and high pressure based on NMR technology. Journal of Petroleum Science & Engineering 208 (Part D):109623. doi:10.1016/j.petrol.2021.109623.
  • Yang, L., H. Ge, X. Shi, et al. 2017. Experimental and numerical study on the relationship between water imbibition and salt ion diffusion in fractured shale reservoirs. Journal of Natural Gas Science & Engineering 38:283–97. doi:10.1016/j.jngse.2016.12.010.
  • You, Q., H. Wang, Y. Zhang, et al. 2018. Experimental study on spontaneous imbibition of recycled fracturing flow-back fluid to enhance oil recovery in low permeability sandstone reservoirs. Journal of Petroleum Science & Engineering 166:375–80. doi:10.1016/j.petrol.2018.03.058.
  • Yue, J. W., Y. K. Ma, Z. F. Wang, et al. 2023. Characteristics of water migration during spontaneous imbibition in anisotropic coal. Energy 263 (Part E):126054. doi:10.1016/j.energy.2022.126054.
  • Yue, J. W., Z. F. Wang, B. M. Shi, et al. 2022. Interaction mechanism of water movement and gas desorption during spontaneous imbibition in gas-bearing coal. Fuel 318:123669. doi:10.1016/j.fuel.2022.123669.
  • Zhang, D. L., S. Liu, M. Puerto, et al. 2006. Wettability alteration and spontaneous imbibition in oil-wet carbonate formations. Journal of Petroleum Science & Engineering 52 (4):213–26. doi:10.1016/j.petrol.2006.03.009.
  • Zhang, T., M. Tang, Y. K. Ma, et al. 2022. Experimental study on CO2/Water flooding mechanism and oil recovery in ultralow - Permeability sandstone with online LF-NMR. Energy 252:123948. doi:10.1016/j.energy.2022.123948.
  • Zhao, M. W., Y. L. Cheng, Y. N. Wu, et al. 2022. Enhanced oil recovery mechanism by surfactant-silica nanoparticles imbibition in ultra-low permeability reservoirs. Journal of Molecular Liquids 348:118010. doi:10.1016/j.molliq.2021.118010.
  • Zhao, H. P., J. H. Hu, J. K. Wang, et al. 2019. A comprehensive model for calculating relative permeability based on spontaneous imbibition and CT scanning measurement. Fuel 247:287–93. doi:10.1016/j.fuel.2019.03.056.
  • Zhong, Y., H. Zhang, E. Kuru, et al. 2019. Mechanisms of how surfactants mitigate formation damage due to aqueous phase trapping in tight gas sandstone formations. Colloids and Surfaces A Physicochemical and Engineering Aspects 573:179–87. doi:10.1016/j.colsurfa.2019.04.008.
  • Zhu, D., B. F. Li, L. Zheng, et al. 2023. Effects of CO2 and surfactants on the interface characteristics and imbibition process in low-permeability heavy oil reservoirs. Colloids and Surfaces A Physicochemical and Engineering Aspects 657 (Part A):130538. doi:10.1016/j.colsurfa.2022.130538.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.