68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transient numerical simulation of heat recovery coke oven based on chemical percolation devolatilization model

, ORCID Icon, &
Pages 6693-6709 | Received 28 Nov 2022, Accepted 18 Apr 2023, Published online: 28 May 2023

References

  • Belosevic, S., M. Sijercic, S. Oka, and D. Tucakovic. 2006. Three-dimensional modeling of utility boiler pulverized coal tangentially fired furnace. International Journal of Heat & Mass Transfer 2006 (19/20):49. doi:10.1016/j.ijheatmasstransfer.2006.03.022.
  • Burra, K., and Gupta, A. K . 2019. Modeling of biomass pyrolysis kinetics using sequential multi-step reaction model. Fuel 237 (FEB 1):1057–1067. doi:10.1016/j.fuel.2018.09.097.
  • Ke, X., M. Engblom, L. Cheng, Chen, L, and Zhang, M . 2021. Modeling and experimental investigation on the fuel particle heat-up and devolatilization behavior in a fluidized bed. Fuel 288:119794. doi:10.1016/j.fuel.2020.119794.
  • Lewis, A. D., and T. H. Fletcher. 2013. Prediction of sawdust pyrolysis yields from a flat-flame burner using the CPD model. Energy & Fuels 27 (jan.–Feb.):942–53. doi:10.1021/ef3018783.
  • Li, J., X. Ma, H. Liu, and Zhang, X. 2018. Life cycle assessment and economic analysis of methanol production from coke oven gas compared with coal and natural gas routes. Journal of Cleaner Production. 185(JUN.1):299–308. doi:10.1016/j.jclepro.2018.02.100.
  • Lin, H. Jin, H., Gao, L., and Zhang, N . 2014. Apolygeneration system for methanol and power production based on coke oven gas and coal gas with CO2 recovery. ENERGY -OXFORD- 74 (1): 174–180.
  • Li, J., Y. Zhou, M. Simayi, Y. Deng, and S. Xie. 2019. Spatial-temporal variations and reduction potentials of volatile organic compound emissions from the coking industry in China. Journal of Cleaner Production 214:214. doi:10.1016/j.jclepro.2018.12.308.
  • Luo, G., Wen, Z., Chen, H., and Gao, Z. 1998. flue-oven mathematical model for coke oven. Fuel & Chemical Processes 2:78–82.
  • Lv, T., M. Fang, H. Li, J. Yan, J. Cen, Z. Xia, J. Tian, and Q. Wang. 2021. Pyrolysis of a typical low-rank coal: Application and modification of the chemical percolation devolatilization model. RSC Advances 11 (29):17993–8002. doi:10.1039/D1RA01981C.
  • Matsubara, K., O. Tajima, N. Suzuki, Okada, Y., Nakayama, Y., and Kato, T. 1982. New simulation model for coke oven and some applications (special issue on ironmaking). Tetsu-To-Hagane 68(15):2148–55. doi:10.2355/tetsutohagane1955.68.15_2148.
  • Meng, F., J. Yu, A. Tahmasebi, H. Zhao, Y. Han, J. Lucas, and T. Wall. 2014. Characteristics of chars from low-temperature pyrolysis of lignite. Energy & Fuels 28 (9):5612–22. doi:10.1021/ef501004t.
  • Orbegoso, E. M., and L. Silva. 2009. Study of stochastic mixing models for combustion in turbulent flows. Proceedings of the Combustion Institute 32 (1):1595–603. doi:10.1016/j.proci.2008.06.008.
  • Peng, L., Z. Wang, and J. BI. 2008. Bi J.Simulation of coal pyrolysis by solid heat carrier in a moving-bed pyrolyzer. Fuel 87 (4):435–42. doi:10.1016/j.fuel.2007.06.022.
  • Qin, S., and S. Chang. 2017. Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery. Energy 141. doi:10.1016/j.energy.2017.09.105.
  • Ren, K., T. Zhang, Y. Bai, Y. Zhai, Y. Jia, X. Zhou, Z. Cheng, and J. Hong. 2022. Environmental and economical assessment of high-value utilization routes for coke oven gas in China. Journal of Cleaner Production 2022 (Jun. 15):353. doi:10.1016/j.jclepro.2022.131668.
  • Richards, A. P., and T. H. Fletcher. 2016. A comparison of simple global kinetic models for coal devolatilization with the CPD model. Fuel 185:171–80. doi:10.1016/j.fuel.2016.07.095.
  • Rodhe. 1969. Calculation and measurement of the non-stationary temperature field in the coke soft and pyrolysis. Chemical 1–8.
  • Saneinejad, S., M. Oonen P, T. Defraeye, D. Derome, and J. Carmeliet. 2012. Coupled CFD, radiation and porous media transport model for evaluating evaporative cooling in an urban environment. Journal of Wind Engineering & Industrial Aerodynamics 104-106 (none):455–63. doi:10.1016/j.jweia.2012.02.006.
  • Tian, D. 1969. Computer analysis of heat transfer in coke oven. Fuji Iron Technology Newspaper 31–43.
  • Wang, D., T. H. Fletcher, S. Mohanty, H. Hu, and E. G. Eddings. 2019. Modified CPD model for coal devolatilization at underground coal thermal treatment conditions. Energy & Fuels 33 (4):2981–93. doi:10.1021/acs.energyfuels.8b04425.
  • Worberg, R., and K. G. Beck. 1983. Mathematical model for coke oven heating, 227–35.
  • Xu, Q., Z. Zou, Y. Chen, Wang, K., and Xiong, Y . 2020. Performance of a novel-type of heat flue in a coke oven based on high-temperature and low-oxygen diffusion combustion technology. Fuel 267:117160. doi:10.1016/j.fuel.2020.117160.
  • Zhang, J., S. Zheng, C. Chen, Wang, X., and Tan, H . 2021. Kinetic model study on biomass pyrolysis and CFD application by using pseudo-Bio-CPD model. Fuel. 293(1):120266. doi:10.1016/j.fuel.2021.120266.
  • Zhao, C. J., J. W. Han, X. T. Yang, J. -P. Qian, and B. -L. Fan. 2016. A review of computational fluid dynamics for the forced-air cooling process. Applied Energy 168 (apr. 15):314–31. doi:10.1016/j.apenergy.2016.01.101.
  • Zheng, Q., and H. Wei. 2013. Three-dimensional numerical simulations and analysis of a heat-recovery coke oven. Energy & Fuels 27 (may–jun.):3570–77. doi:10.1021/ef400218y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.