108
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Biowaste-derived oxygen-self-doped three-dimensional interconnected porous carbon for electrochemical supercapacitor applications

, , ORCID Icon, , & ORCID Icon
Pages 6331-6342 | Received 09 Feb 2023, Accepted 13 May 2023, Published online: 18 May 2023

References

  • Agustino, A., A. Taslim, R. Amri, E. Taer, and E. Taer. 2020. The physical and electrochemical properties of activated carbon electrode derived from pineapple leaf waste for supercapacitor applications. Journal of Physics Conference Series 1655 (1): 012008-012008–7. doi:10.1088/1742-6596/1655/1/012008.
  • Alcaraz, L., A. Adán-Más, P. Arévalo-Cid, M. D. F. Montemor, and F. A. López. 2020. Activated carbons from winemaking biowastes for electrochemical double-layer capacitors preparation of the activated carbons from. Frontiers in Chemistry 8 (August):1–10. doi:10.3389/fchem.2020.00686.
  • Ali, G. A. M., S. Supriya, K. F. Chong, E. R. Shaaban, H. Algarni, T. Maiyalagan, and G. Hegde. 2021. Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: A conversion of Allium cepa peel to energy storage system. Biomass Conversion and Biorefinery 11 (4):1311–23. doi:10.1007/s13399-019-00520-3.
  • Chen, H., X. Lei, T. Yu, X. Guan, and H. Yuan. 2022. Ultra-high specific capacitance of self-doped 3D hierarchical porous turtle shell-derived activated carbon for high-performance supercapacitors. Ceramics International 48 (4):5289–98. doi:10.1016/j.ceramint.2021.11.072.
  • Dai, Z., P. G. Ren, W. He, X. Hou, F. Ren, Q. Zhang, and Y. L. Jin. 2020. Boosting the electrochemical performance of nitrogen-oxygen co-doped carbon nanofibers based supercapacitors through esterification of lignin precursor. Renewable Energy 162:613–23. doi:10.1016/j.renene.2020.07.152.
  • Feng, T., S. Wang, Y. Hua, P. Zhou, G. Liu, K. Ji, Z. Lin, S. Shi, X. Jiang, and R. Zhang. 2021. Synthesis of biomass-derived N,O-codoped hierarchical porous carbon with large surface area for high-performance supercapacitor. Journal of Energy Storage 44 (PA):103286. doi:10.1016/j.est.2021.103286.
  • Guo, Y., T. Wang, D. Wu, and Y. Tan. 2021. One-step synthesis of in-situ N, S self-doped carbon nanosheets with hierarchical porous structure for high performance supercapacitor and oxygen reduction reaction electrocatalyst. Electrochimica acta 366:137404. doi:10.1016/j.electacta.2020.137404.
  • He, W., P. Ren, Z. Dai, X. Hou, F. Ren, and Y. Jin. 2021. Hierarchical porous carbon composite constructed with 1-D CNT and 2-D GNS anchored on 3-D carbon skeleton from spent coffee grounds for supercapacitor. Applied Surface Science 558 (April):149899. doi:10.1016/j.apsusc.2021.149899.
  • He, G., G. Yan, Y. Song, L. Wang, and L. Wang. 2020. Biomass juncus derived nitrogen-doped porous carbon materials for supercapacitor and oxygen reduction reaction. Frontiers in Chemistry 8 (April):1–10. doi:10.3389/fchem.2020.00226.
  • Hor, A. A., and S. A. Hashmi. 2020. Optimization of hierarchical porous carbon derived from a biomass pollen-cone as high-performance electrodes for supercapacitors. Electrochimica acta 356:136826. doi:10.1016/j.electacta.2020.136826.
  • Iozzo, D. A. B., M. Tong, G. Wu, and E. P. Furlani. 2015. Numerical analysis of electric double layer capacitors with mesoporous electrodes: effects of electrode and electrolyte properties. The Journal of Physical Chemistry C 119 (45):25235–42. doi:10.1021/acs.jpcc.5b08409.
  • Jia, B., Q. Mian, D. Wu, and T. Wang. 2022. Heteroatoms self-doped porous carbon from cottonseed meal using K2CO3 as activator and DES electrolyte for supercapacitor with high energy density. Materials Today Chemistry 24:100828. doi:10.1016/j.mtchem.2022.100828.
  • Kanjana, K., P. Harding, T. Kwamman, W. Kingkam, and T. Chutimasakul. 2021. Biomass-derived activated carbons with extremely narrow pore size distribution via eco-friendly synthesis for supercapacitor application. Biomass & bioenergy 153 (August):106206. doi:10.1016/j.biombioe.2021.106206.
  • Khot, M., and A. Kiani. 2022. Synthesis of self-grown nanostructured NiO via pulse ionization for binderless psuedocapacitor electrode. Journal of Energy Storage 55 (PD):105779. doi:10.1016/j.est.2022.105779.
  • Kolanowski, Ł., M. Graś-Ligocka, P. Krawczyk, T. Buchwald, K. Lota, and G. Lota. 2022. Ozonation with ammoxidation as a method of obtaining O, N-doped carbon electrode material to electrochemical capacitors. Electrochimica acta 413 (February):1–7. doi:10.1016/j.electacta.2022.140130.
  • Liang, Y., X. Liu, and X. Qi. 2022. Hierarchical nanoarchitectonics of ordered mesoporous carbon from lignin for high-performance supercapacitors. International Journal of Biological Macromolecules 213 (38):610–20. doi:10.1016/j.ijbiomac.2022.06.005.
  • Liang, X., R. Liu, and X. Wu. 2021. Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors. Microporous and Mesoporous Materials 310 (June 2020):110659. doi:10.1016/j.micromeso.2020.110659.
  • Liang, Y., Y. Lu, G. Xiao, J. Zhang, H. Chi, and Y. Dong. 2020. Hierarchical porous nitrogen-doped carbon microspheres after thermal rearrangement as high performance electrode materials for supercapacitors. Applied Surface Science 529:147141. doi:10.1016/j.apsusc.2020.147141.
  • Liang, J., Z. Xiao, Y. Gao, X. Xu, D. Kong, M. Wagner, and L. Zhi. 2019. Ionothermal strategy towards template-free hierarchical porous carbons for supercapacitive energy storage. Carbon 143:487–93. doi:10.1016/j.carbon.2018.11.065.
  • Li, D., Y. Guo, Y. Li, Z. Liu, and Z. Chen. 2022. Waste-biomass tar functionalized carbon spheres with N/P Co-doping and hierarchical pores as sustainable low-cost energy storage materials. Renewable Energy 188:61–69. doi:10.1016/j.renene.2022.01.109.
  • Lillo-Ródenas, M. A., D. Cazorla-Amorós, and A. Linares-Solano. 2003. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon 41 (2):267–75. doi:10.1016/S0008-6223(02)00279-8.
  • Lillo-Ródenas, M. A., J. Juan-Juan, D. Cazorla-Amorós, and A. Linares-Solano. 2004. About reactions occurring during chemical activation with hydroxides. Carbon 42 (7):1371–75. doi:10.1016/j.carbon.2004.01.008.
  • Lin, Y., Z. Chen, C. Yu, and W. Zhong. 2019. Heteroatom-doped sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high- performance supercapacitors. ACS Sustainable Chemistry & Engineering 7 (3):3389–403. doi:10.1021/acssuschemeng.8b05593.
  • Liu, H., R. Liu, C. Xu, Y. Ren, D. Tang, C. Zhang, F. Li, X. Wei, and R. Zhang. 2020. Oxygen–nitrogen–sulfur self-doping hierarchical porous carbon derived from lotus leaves for high-performance supercapacitor electrodes. Journal of Power Sources 479 (May):228799. doi:10.1016/j.jpowsour.2020.228799.
  • Liu, Y., H. Tan, Z. Tan, and X. Cheng. 2022. Rice husk derived capacitive carbon prepared by one-step molten salt carbonization for supercapacitors. Journal of Energy Storage 55 (PA):105437. doi:10.1016/j.est.2022.105437.
  • Liu, D., G. Xu, X. Yuan, Y. Ding, and B. Fan. 2023. Pore size distribution modulation of waste cotton-derived carbon materials via citrate activator to boost supercapacitive performance. Fuel 332 (P1):126044. doi:10.1016/j.fuel.2022.126044.
  • Liu, Z., S. Zhang, L. Wang, T. Wei, Z. Qiu, and Z. Fan. 2020. High‐efficiency utilization of carbon materials for supercapacitors. Nano Select 1 (2):244–62. doi:10.1002/nano.202000011.
  • Ma, F., S. Ding, H. Ren, and Y. Liu. 2019. Sakura-based activated carbon preparation and its performance in supercapacitor applications. RSC Advances 9 (5):2474–83. doi:10.1039/c8ra09685f.
  • Ma, G., W. Tang, K. Sun, Z. Zhang, E. Feng, and Z. Lei. 2017. Coprinus comatus-based nitrogen-doped active carbon for high performance supercapacitor. Nano 12 (8):1–15. doi:10.1142/S179329201750103X.
  • Miao, J., Z. Zhai, S. Wang, Y. Xu, S. Du, X. Wang, X. Dong, B. Ren, and Z. Liu. 2022. Facile synthesis of hierarchical porous two-dimensional N-doped carbon nanosheets as bi-functional electrode for superior supercapacitor and photo-catalyst. Journal of Cleaner Production 369 (August):133369. doi:10.1016/j.jclepro.2022.133369.
  • Mo, F., H. Zhang, Y. Wang, C. Chen, and X. Wu. 2022. Heteroatom-doped hierarchical porous carbon for high performance flexible all-solid-state symmetric supercapacitors. Journal of Energy Storage 49 (February):104122. doi:10.1016/j.est.2022.104122.
  • Nanda, O. P., and S. Badhulika. 2022. Biomass derived Nitrogen, Sulphur, and Phosphorus self-doped micro-meso porous carbon for high-energy symmetric supercapacitor – with a detailed study of the effect of different current collectors. Journal of Energy Storage 56 (October):106042. doi:10.1016/j.est.2022.106042.
  • Nanda, O. P., N. K. Das, P. Sekar, A. Ramadoss, and B. Saravanakumar. 2022. Bio-waste derived self-templated, nitrogen self-doped porous carbon for supercapacitors. Bioresource Technology Reports 19 (August):101198. doi:10.1016/j.biteb.2022.101198.
  • Panja, T., D. Bhattacharjya, and J. S. Yu. 2015. Nitrogen and phosphorus co-doped cubic ordered mesoporous carbon as a supercapacitor electrode material with extraordinary cyclic stability. Journal of Materials Chemistry A 3 (35):18001–09. doi:10.1039/c5ta04169d.
  • Pourjavadi, A., M. Doroudian, A. Ahadpour, and B. Pourbadiei. 2018. Preparation of flexible and free-standing graphene-based current collector via a new and facile self-assembly approach: Leading to a high performance porous graphene/polyaniline supercapacitor. Energy 152:178–89. doi:10.1016/j.energy.2018.03.138.
  • Racik, K. M., A. Manikandan, M. Mahendiran, P. Prabakaran, J. Madhavan, and M. V. Antony. 2020. Fabrication of manganese oxide decorated copper oxide (MnO 2/CuO) nanocomposite electrodes for energy storage supercapacitor devices. Physica E Low-Dimensional Systems & Nanostructures 119 (January):114033. doi:10.1016/j.physe.2020.114033.
  • Rajesh, M., R. Manikandan, S. Park, B. C. Kim, W. J. Cho, K. H. Yu, and C. J. Raj. 2020. Pinecone biomass-derived activated carbon: The potential electrode material for the development of symmetric and asymmetric supercapacitors. International Journal of Energy Research 44 (11):8591–605. doi:10.1002/er.5548.
  • Scheers, J., S. Fantini, and P. Johansson. 2014. A review of electrolytes for lithium-sulphur batteries. Journal of Power Sources 255:204–18. doi:10.1016/j.jpowsour.2014.01.023.
  • Shan, D., J. Yang, W. Liu, J. Yan, and Z. Fan. 2016. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. Journal of Materials Chemistry A 4 (35):13589–602. doi:10.1039/c6ta05406d.
  • Shao, H., Y. Wu, Z. Lin, P. Simon, and P. Simon. 2020. Nanoporous carbon for electrochemical capacitive energy storage. Chemical So 49 (10):3005–39. doi:10.1039/d0cs00059k.
  • Simon, P., and Y. Gogotsi. 2008. Materials for electrochemical capacitors. Nature Materials 7 (11):845–54.
  • Sui, Z. Y., Q. H. Meng, J. T. Li, J. H. Zhu, Y. Cui, and B. H. Han. 2014. High surface area porous carbons produced by steam activation of graphene aerogels. Journal of Materials Chemistry A 2 (25):9891–98. doi:10.1039/c4ta01387e.
  • Sun, C., Z. Guo, M. Zhou, X. Li, Z. Cai, and F. Ge. 2021. Heteroatoms-doped porous carbon electrodes with three-dimensional self-supporting structure derived from cotton fabric for high-performance wearable supercapacitors. Journal of Power Sources 482 (May 2020):228934. doi:10.1016/j.jpowsour.2020.228934.
  • Sun, Y., D. Xu, and S. Wang. 2022. Self-assembly of biomass derivatives into multiple heteroatom-doped 3D-interconnected porous carbon for advanced supercapacitors. Carbon 199 (August):258–67. doi:10.1016/j.carbon.2022.08.026.
  • Surya, K., and M. S. Michael. 2020. Novel interconnected hierarchical porous carbon electrodes derived from bio-waste of corn husk for supercapacitor applications. Journal of Electroanalytical Chemistry 878:114674. doi:10.1016/j.jelechem.2020.114674.
  • Taer, E., M. Melisa, A. Agustino, R. Taslim, W. Sinta, and A. Apriwandi. 2021. Biomass-based activated carbon monolith from Tectona grandis leaf as supercapacitor electrode materials. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 00 (00):1–12. doi:10.1080/15567036.2021.1950871.
  • Taslim, R., A. Apriwandi, and E. Taer. 2022. Novel moringa oleifera leaves 3D porous carbon-based electrode material as a high-performance EDLC supercapacitor. ACS Omega 7:36489–502. doi:10.1021/acsomega.2c04301.
  • Wang, T., X. He, W. Gong, Z. Kou, Y. Yao, S. Fulbright, K. F. Reardon, and M. Fan (2022). Three-dimensional, heteroatom-enriched, porous carbon nanofiber flexible paper for free-standing supercapacitor electrode materials derived from microalgae oil. Fuel Processing Technology, 225(July 2021), 107055. 10.1016/j.fuproc.2021.107055
  • Wang, J., X. Zhang, Z. Li, Y. Ma, and L. Ma. 2020. Recent progress of biomass-derived carbon materials for supercapacitors. Journal of Power Sources 451 (October 2019):227794. doi:10.1016/j.jpowsour.2020.227794.
  • Xu, P., J. Tong, L. Zhang, Y. Yang, X. Chen, J. Wang, and S. Zhang. 2022. Dung beetle forewing-derived nitrogen and oxygen self-doped porous carbon for high performance solid-state supercapacitors. Journal of Alloys and Compounds 892:162129. doi:10.1016/j.jallcom.2021.162129.
  • Xu, H., Y. Zhang, L. Wang, Y. Chen, and S. Gao. 2021. Hierarchical porous biomass-derived carbon framework with ultrahigh surface area for outstanding capacitance supercapacitor. Renewable Energy 179:1826–35. doi:10.1016/j.renene.2021.08.008.
  • Yang, J., K. X. Liu, Q. Y. Liu, and X. C. Zheng. 2021. Biomass waste-derived mesopore-dominant porous carbon for high-efficiency capacitive energy storage. Journal of Alloys and Compounds 885:161218. doi:10.1016/j.jallcom.2021.161218.
  • Yanilmaz, M., M. Dirican, A. M. Asiri, and X. Zhang. 2019. Flexible polyaniline-carbon nanofiber supercapacitor electrodes. Journal of Energy Storage 24:100766. doi:10.1016/j.est.2019.100766.
  • You, Z., L. Zhao, K. Zhao, H. Liao, S. Wen, Y. Xiao, B. Cheng, and S. Lei. 2023. Highly tunable three-dimensional porous carbon produced from tea seed meal crop by-products for high performance supercapacitors. Applied Surface Science 607 (June 2022):155080. doi:10.1016/j.apsusc.2022.155080.
  • Zhao, K., L. Zhao, W. Zhou, L. Rao, S. Wen, Y. Xiao, B. Cheng, and S. Lei. 2022. Pore regulation of well-developed honeycomb-like carbon materials from Zizania latifolia for supercapacitors. Journal of Energy Storage 52 (PB):104910. doi:10.1016/j.est.2022.104910.
  • Zhong, X., Q. Mao, Z. Li, Z. Wu, Y. Xie, S. H. Li, G. Liang, and H. Wang. 2021. Biomass-derived O, N-codoped hierarchically porous carbon prepared by black fungus andHericium erinaceusfor high performance supercapacitor. RSC Advances 11 (45):27860–67. doi:10.1039/d1ra03699h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.