80
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Fluidized bed gasification of wood chips using bottom ash derived from coal: optimization of operating conditions

, &
Pages 7150-7159 | Received 20 May 2022, Accepted 26 Apr 2023, Published online: 04 Jun 2023

References

  • Alaedini, A. H., H. K. Tourani, and M. Saidi. 2023. A review of waste-to-hydrogen conversion techniques for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development. Journal of Environmental Management 329:117077. doi:10.1016/j.jenvman.2022.117077.
  • Ashok, J., S. Das, T. Y. Yeo, N. Dewangan, and S. Kawi. 2018. Incinerator bottom ash derived from municipal solid waste as a potential catalytic support for biomass tar reforming. Waste Management 82:249–57. doi:10.1016/j.wasman.2018.10.035.
  • Cai, J., R. Zeng, W. Zheng, S. Wang, J. Han, K. Li, M. Luo, and X. Tang. 2021. Synergistic effects of co-gasification of municipal solid waste and biomass in fixed-bed gasifier. Process Safety and Environmental Protection 148:1–12. doi:10.1016/j.psep.2020.09.063.
  • Chen, G., J. Li, Z. Cheng, B. Yan, W. Ma, and J. Yao. 2018. Investigation on model compound of biomass gasification tar cracking in microwave furnace: Comparative research. ApplliedEnergy 217:249–57. doi:10.1016/j.apenergy.2018.02.028.
  • Gunasekaran, A. P., M. P. Chockalingam, S. R. Padmavathy, and J. S. Santhappan. 2021. Numerical and experimental investigation on the thermochemical gasification potential of Cocoa pod husk (Theobroma Cacoa) in an open-core gasifier. Clean Tech Environ Policy 23:1603–15. doi:10.1007/s10098-021-02051-w.
  • Hanaoka, T., T. Yoshida, S. Fujimoto, K. Kamei, M. Harada, Y. Suzuki, H. Hatano, S. Y. Yokoyama, and T. Minowa. 2005. Hydrogen production from woody biomass by steam gasification using a CO2 sorbent. Biomass & bioenergy 28:63–68. doi:10.1016/j.biombioe.2004.03.009.
  • Hernández, J. J., G. Aranda-Almansa, and A. Bula. 2010. Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time. Fuel Processing Technology 91:681–92. doi:10.1016/j.fuproc.2010.01.018.
  • Hildor, F., A. H. Soleimanisalim, M. Seemann, T. Mattisson, and H. Leion. 2023. Tar characteristics generated from a 10 kWth chemical looping biomass gasifier using steel converter slag as an oxygen carrier. Fuel 331:125770.
  • Huang, A. T., H. C. Ong, I. M. R. Fattah, C. T. Chong, C. K. Cheng, R. Sakthivel, and Y. S. Ok. 2021. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology 223:106997. doi:10.1016/j.fuproc.2021.106997.
  • Hussain, M., L. D. Tuf, S. Yusup, and H. Zabiri. 2019. Characterization of coal bottom ash &its potential to be used as catalyst in biomass gasification. Materials Today: Proceedings 16:1886–93. doi:10.1016/j.matpr.2019.06.065.
  • Hu, G., S. Xu, S. Li, C. Xiao, and S. Liu. 2006. Steam gasification of apricot stones with olivine and dolomite as downstream catalysts. Fuel Processing Technology 87:375–82. doi:10.1016/j.fuproc.2005.07.008.
  • Jin, K., D. Ji, Q. Xie, Y. Nie, F. Yu, and J. Ji. 2019. Hydrogen production from steam gasification of tableted biomass in molten eutectic carbonates. International Journal of Hydrogen Energy 44:22919–25. doi:10.1016/j.ijhydene.2019.07.033.
  • Li, J., G. Chang, K. Song, B. Hao, C. Wang, J. Zhang, G. Yue, and S. Hu. 2022. Influence of coal bottom ash additives on catalytic reforming of biomass pyrolysis gaseous tar and biochar/steam gasification reactivity. Renewable Energy. doi:10.1016/j.renene.2022.12.037.
  • Liu, C., D. Chen, Q. Tang, S. Abuelgasim, C. Xu, J. Luo, Z. Zhao, and A. Abdalaziz. 2023. Hydrogen rich-syngas production from straw char by chemical looping gasification: The synergistic effect of Mn and Fe on Ni-based spinel structure as oxygen carrier. Fuel 334:126803. doi:10.1016/j.fuel.2022.126803.
  • Luo, S., B. Xiao, X. Guo, Z. Hu, S. Liu, and M. He. 2009. Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: Influence of particle size on gasification performance. International Journal of Hydrogen Energy 34:1260–64. doi:10.1016/j.ijhydene.2008.10.088.
  • Nuran Zaini, I., Y. Gomez-Rueda, C. García Lopez, D. K. Ratnasari, L. Helsen, T. Pretz, and P. G. Jo Jonsson. 2020. Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar. Energy 207:118208. doi:10.1016/j.energy.2020.118208.
  • Qi, T., T. Lei, B. Yan, C. Chen, Z. Li, H. Fatehi, Z. Wang, and X. S. Bai. 2019. Biomass steam gasification in bubbling fluidized bed for higher-H2 syngas: CFD simulation with coarse grain model. International Journal of Hydrogen Energy 44:6448–60. doi:10.1016/j.ijhydene.2019.01.146.
  • Rahardjo, B. S. 2013. Effect of gasifying agent (air + steam) injection towards syngas quality from rice husk gasification. International Journal of Engineering and Applied Sciences 4:74–86.
  • Ríos-Badrán, I. M., I. Luzardo-Ocampo, J. F. García-Trejo, J. Santos-Cruz, and C. Gutiérrez-Antonio. 2020. Production and characterization of fuel pellets from rice husk and wheat straw. Renewable Energy 145:500–07. doi:10.1016/j.renene.2019.06.048.
  • Sadhukhan, J., K. S. Ng, and E. Martinez-Hernandez. 2014. Biorefineries and chemical processes: Design, integration and sustainability analysis. Wiley. doi:10.1002/9781118698129.ch15.
  • Sadhukhan, J., K. S. Ng, N. Shah, and H. J. Simons. 2009. Heat integration strategy for economic production of combined heat and power from biomass waste. Energy Fuels 23:5106–20. doi:10.1021/ef900472s.
  • Shahbaz, M., S. A. A. Taqvi, M. Inayat, A. Inayat, S. A. Sulaiman, G. McKay, and T. Al-Ansari. 2020. Air catalytic biomass (PKS) gasification in a fixed-bed downdraft gasifier using waste bottom ash as catalyst with NARX neural network modelling. Computers & Chemical Engineering 142:107048. doi:10.1016/j.compchemeng.2020.107048.
  • Soomro, A., S. Chen, S. Ma, and W. Xiang. 2018. Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process. Energy & Environment 29:839–67. doi:10.1177/0958305X18767848.
  • Tavares, R., A. Ramos, and A. Rouboa. 2019. A theoretical study on municipal solid waste plasma gasification. Waste Management 90:37–45. doi:10.1016/j.wasman.2019.03.051.
  • Vamvuka, D., E. Afthentopoulos, and S. Sfakiotakis. 2022. H2-rich gas production from steam gasification of a winery waste and its blends with industrial wastes. Effect of operating parameters on gas quality and efficiency. Renew Energy 197:1224–32. doi:10.1016/j.renene.2022.07.162.
  • Wang, W., W. Li, Q. Wang, J. Zhang, and J. Liu. 2021. Tar steam reforming during biomass gasification: Kinetic model and reaction pathway. Clean Tech Environ Policy 24:39–50. doi:10.1007/s10098-021-02062-7.
  • Wang, F., D. Ouyang, Z. Zhou, S. J. Page, D. Liu, and X. Zhao. 2020. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. Journal of Energy Chemistry 57:247–80. doi:10.1016/j.jechem.2020.08.060.
  • Wang, S., L. Sun, and S. Iqbal. 2022. Green facing role on renewable energy dependence and energy transition in E7 economies. Renewable Energy 200:1561–72. doi:10.1016/j.renene.2022.10.067.
  • Wei, L., S. Xu, L. Zhang, H. Zhang, C. Liu, H. Zhu, and S. Liu. 2006. Characteristics of fast pyrolysis of biomass in a free fall reactor. Fuel Processing Technology 87:863–71. doi:10.1016/j.fuproc.2006.06.002.
  • Xu, M. -X., Z. -S. Liu, X. -Y. Zhang, J. -Y. Di, X. -X. Meng, L. Zhao, and Q. Lu. 2023. Steam reforming of biomass gasification tar over Ni-based catalyst supported by TiO2-SiO2 composite. Fuel 343:127934. doi:10.1016/j.fuel.2023.127934.
  • Yao, X., J. Mao, L. Li, L. Sun, K. Xu, X. Ma, Y. Hu, Z. Zhao, S. Chen, and K. Xu. 2021. Characterization comparison of bottom ash and fly ash during gasification of agricultural residues at an industrial-scale gasification plant – Experiments and analysis. Fuel 285:119122. doi:10.1016/j.fuel.2020.119122.
  • Yu, S., X. Hu, L. Li, and H. Chen. 2020. Does the development of renewable energy promote carbon reduction? Evidence from Chinese provinces. Journal of Environmental Management 268:110634. doi:10.1016/j.jenvman.2020.110634.
  • Zhang, Z., and S. Pang. 2019. Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100 kW dual fluidised bed gasifier. Renewable Energy 132:416–24. doi:10.1016/j.renene.2018.07.144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.