197
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of tea dregs-derived 3D interconnected honeycomb-like porous activated carbon for supercapacitor applications

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 6415-6426 | Received 17 Oct 2022, Accepted 16 May 2023, Published online: 23 May 2023

References

  • Agustino, A., A. Taslim, R. Amri, E. Taer, and E. Taer. 2020. The physical and electrochemical properties of activated carbon electrode derived from pineapple leaf waste for supercapacitor applications. Journal of Physics Conference Series 1655 (1):0120081–87. doi:10.1088/1742-6596/1655/1/012008.
  • Ajay, K. M., M. N. Dinesh, G. Byatarayappa, M. G. Radhika, N. Kathyayini, and H. Vijeth. 2021. Electrochemical investigations on low cost KOH activated carbon derived from orange-peel and polyaniline for hybrid supercapacitors. Inorganic Chemistry Communications 127 (January):108523. doi:10.1016/j.inoche.2021.108523.
  • Augustyn, V., P. Simon, and B. Dunn. 2014. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science 7 (5):1597–614. doi:10.1039/c3ee44164d.
  • Awasthi, G. P., D. P. Bhattarai, B. Maharjan, K. S. Kim, C. H. Park, and C. S. Kim. 2019. Synthesis and characterizations of activated carbon from Wisteria sinensis seeds biomass for energy storage applications. Journal of Industrial & Engineering Chemistry 72:265–72. doi:10.1016/j.jiec.2018.12.027.
  • Banna, H., M. Emrooz, M. S. Hosseini, and S. Mohammadi. 2022. One-step green synthesis of meso-microporous carbons by self-activation of lemon wastes for high-performance supercapacitors. Journal of Energy Storage 56 (PA):105989. doi:10.1016/j.est.2022.105989.
  • Cheng, P., S. Gao, P. Zang, X. Yang, Y. Bai, H. Xu, Z. Liu, and Z. Lei. 2015. Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–24. doi:10.1016/j.carbon.2015.05.056.
  • Chen, Y., Y. Yu, X. Zhang, C. Guo, C. Chen, S. Wang, and D. Min. 2022. High performance supercapacitors assembled with hierarchical porous carbonized wood electrode prepared through self-activation. Industrial Crops and Products 181 (February):114802. doi:10.1016/j.indcrop.2022.114802.
  • Dong, S., X. He, H. Zhang, X. Xie, M. Yu, C. Yu, N. Xiao, and J. Qiu. 2018. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A 6 (33):15954–60. doi:10.1039/c8ta04080j.
  • Du, W., Z. Zhang, L. Du, X. Fan, Z. Shen, X. Ren, Y. Zhao, C. Wei, and S. Wei. 2019. Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors. Journal of Alloys and Compounds 797:1031–40. doi:10.1016/j.jallcom.2019.05.207.
  • Elshahawy, A. M., C. Guan, X. Li, H. Zhang, Y. Hu, H. Wu, S. J. Pennycook, and J. Wang. 2017. Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy 39 (June):162–71. doi:10.1016/j.nanoen.2017.06.042.
  • Gao, S., X. Li, L. Li, and X. Wei. 2017. A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy 33:334–42. doi:10.1016/j.nanoen.2017.01.045.
  • Gong, C., X. Wang, D. Ma, H. Chen, S. Zhang, and Z. Liao. 2016. Microporous carbon from a biological waste-stiff silkworm for capacitive energy storage. Electrochimica acta 220:331–39. doi:10.1016/j.electacta.2016.10.120.
  • Guo, F., X. Jiang, X. Jia, S. Liang, L. Qian, and Z. Rao. 2019. Synthesis of biomass carbon electrode materials by bimetallic activation for the application in supercapacitors. Journal of Electroanalytical Chemistry 844 (May):105–15. doi:10.1016/j.jelechem.2019.05.004.
  • Hao, G. P., W. C. Li, D. Qian, G. H. Wang, W. P. Zhang, T. Zhang, A. Q. Wang, F. Schüth, H. J. Bongard, and A. H. Lu. 2011. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. Journal of the American Chemical Society 133 (29):11378–88. doi:10.1021/ja203857g.
  • Jain, A., and S. K. Tripathi. 2014. Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 183 (1):54–60. doi:10.1016/j.mseb.2013.12.004.
  • Jayachandran, M., A. Rose, T. Maiyalagan, N. Poongodi, and T. Vijayakumar. 2021. Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application. Electrochimica acta 366:137412. doi:10.1016/j.electacta.2020.137412.
  • Kim, M., J. F. S. Fernando, Z. Li, A. Alowasheeir, A. Ashok, R. Xin, D. Martin, A. K. Nanjundan, D. V. Golberg, Y. Yamauchi, et al. 2022. Ultra-stable sodium ion storage of biomass porous carbon derived from sugarcane. Chemical Engineering Journal 445:136344. doi:10.1016/j.cej.2022.136344.
  • Kim, M., H. Lim, X. Xu, M. S. A. Hossain, J. Na, N. N. Awaludin, J. Shah, L. K. Shrestha, K. Ariga, A. K. Nanjundan, et al. 2021. Sorghum biomass-derived porous carbon electrodes for capacitive deionization and energy storage. Microporous and Mesoporous Materials 312 (December):110757. doi:10.1016/j.micromeso.2020.110757.
  • Kim, B. H., K. S. Yang, and J. P. Ferraris. 2012. Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors. Electrochimica acta 75:325–31. doi:10.1016/j.electacta.2012.05.004.
  • Liang, X., R. Liu, and X. Wu. 2021. Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors. Microporous and Mesoporous Materials 310 (June):110659. doi:10.1016/j.micromeso.2020.110659.
  • Lillo-Ródenas, M. A., D. Cazorla-Amorós, and A. Linares-Solano. 2003. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon 41 (2):267–75. doi:10.1016/S0008-6223(02)00279-8.
  • Lillo-Ródenas, M. A., J. Juan-Juan, D. Cazorla-Amorós, and A. Linares-Solano. 2004. About reactions occurring during chemical activation with hydroxides. Carbon 42 (7):1371–75. doi:10.1016/j.carbon.2004.01.008.
  • Ma, F., S. Ding, H. Ren, and Y. Liu. 2019. Sakura-based activated carbon preparation and its performance in supercapacitor applications. RSC Advances 9 (5):2474–83. doi:10.1039/c8ra09685f.
  • Merin, P., P. Jimmy Joy, M. N. Muralidharan, E. Veena Gopalan, and A. Seema. 2021. Biomass-derived activated carbon for high-performance supercapacitor electrode applications. Chemical Engineering & Technology 44 (5):844–51. doi:10.1002/ceat.202000450.
  • Mohammed, A. A., C. Chen, and Z. Zhu. 2019. Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells. Journal of Colloid and Interface Science 538:308–19. doi:10.1016/j.jcis.2018.11.103.
  • Momodu, D., N. F. Sylla, B. Mutuma, A. Bello, T. Masikhwa, S. Lindberg, A. Matic, and N. Manyala. 2019. Stable ionic-liquid-based symmetric supercapacitors from Capsicum seed-porous carbons. Journal of Electroanalytical Chemistry 838 (February):119–28. doi:10.1016/j.jelechem.2019.02.045.
  • Mo, F., H. Zhang, Y. Wang, C. Chen, and X. Wu. 2022. Heteroatom-doped hierarchical porous carbon for high performance flexible all-solid-state symmetric supercapacitors. Journal of Energy Storage 49 (February):104122. doi:10.1016/j.est.2022.104122.
  • Nguyen, N. T., P. A. Le, and V. B. T. Phung. 2021. Biomass-derived carbon hooks on Ni foam with free binder for high performance supercapacitor electrode. Chemical Engineering Science 229:116053. doi:10.1016/j.ces.2020.116053.
  • Shao, Y., M. F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, and R. B. Kaner. 2018. Design and mechanisms of asymmetric supercapacitors [Review-article]. Chemical Reviews 118 (18):9233–80. doi:10.1021/acs.chemrev.8b00252.
  • Shinde, D. V., D. Y. Ahn, V. V. Jadhav, D. Y. Lee, N. K. Shrestha, J. K. Lee, H. Y. Lee, R. S. Mane, and S. H. Han. 2014. A coordination chemistry approach for shape controlled synthesis of indium oxide nanostructures and their photoelectrochemical properties. Journal of Materials Chemistry A 2 (15):5490–98. doi:10.1039/c3ta15407f.
  • Simon, P., and Y. Gogotsi. 2008. Materials for electrochemical capacitors. Nature Materials 7 (11):845–54. doi:10.1038/nmat2297.
  • Sodtipinta, J., T. Amornsakchai, and P. Pakawatpanurut. 2017. Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode. Advances in Natural Sciences: Nanoscience & Nanotechnology 8 (3):1–10. doi:10.1088/2043-6254/aa7233.
  • Sodtipinta, J., C. Ieosakulrat, N. Poonyayant, P. Kidkhunthod, N. Chanlek, T. Amornsakchai, and P. Pakawatpanurut. 2017. Interconnected open-channel carbon nanosheets derived from pineapple leaf fiber as a sustainable active material for supercapacitors. Industrial Crops and Products 104 (April):13–20. doi:10.1016/j.indcrop.2017.04.015.
  • Song, S., F. Ma, G. Wu, D. Ma, W. Geng, and J. Wan. 2015. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. Journal of Materials Chemistry A 3 (35):18154–62. doi:10.1039/c5ta04721h.
  • Song, M., Y. Zhou, X. Ren, J. Wan, Y. Du, G. Wu, and F. Ma. 2019. Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance. Journal of Colloid and Interface Science 535:276–86. doi:10.1016/j.jcis.2018.09.055.
  • Su, X.-L., J.-R. Chen, G.-P. Zheng, J.-H. Yang, X.-X. Guan, P. Liu, and X.-C. Zheng. 2018. Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications. Applied Surface Science 436:327–36. doi:10.1016/j.apsusc.2017.11.249.
  • Sui, Z. Y., Q. H. Meng, J. T. Li, J. H. Zhu, Y. Cui, and B. H. Han. 2014. High surface area porous carbons produced by steam activation of graphene aerogels. Journal of Materials Chemistry A 2 (25):9891–98. doi:10.1039/c4ta01387e.
  • Taer, E., A. Agustino, A. Awitdrus, R. Farma, and R. Taslim. 2021. The synthesis of carbon nanofiber derived from pineapple leaf fibers as a carbon electrode for supercapacitor application. Journal of Electrochemical Energy Conversion and Storage 18 (3):0310041–48. doi:10.1115/1.4048405.
  • Taer, E., K. Natalia, A. Apriwandi, R. Taslim, A. Agustino, and R. Farma. 2020. The synthesis of activated carbon nanofiber electrode made from acacia leaves (Acacia mangium wild) as supercapacitors. Advances in Natural Sciences: Nanoscience & Nanotechnology 11 (2):250071–77. doi:10.1088/2043-6254/ab8b60.
  • Taer, E., L. Pratiwi, A. Apriwandi, W. S. Mustika, R. Taslim, and A. Agustino. 2020. Three-dimensional pore structure of activated carbon monolithic derived from hierarchically bamboo stem for supercapacitor application. Communications in Science and Technology 5 (1):22–30. doi:10.21924/cst.5.1.2020.180.
  • Taer, E., N. Yanti, W. S. Mustika, A. Apriwandi, R. Taslim, and A. Agustino. 2021. Porous activated carbon monolith with nanosheet/nanofiber structure derived from the green stem of cassava for supercapacitor application. International Journal of Energy Research 44 (13):10192–205. doi:10.1002/er.5639.
  • Tang, C. L., X. Wei, Y. M. Jiang, X. Y. Wu, L. N. Han, K. X. Wang, and J. S. Chen. 2015. Cobalt-doped MnO2 hierarchical yolk-shell spheres with improved supercapacitive performance. The Journal of Physical Chemistry C 119 (16):8465–71. doi:10.1021/jp512795g.
  • Tian, J., T. Zhang, D. Talifu, A. Abulizi, and Y. Ji. 2021. Porous carbon materials derived from waste cotton stalk with ultra-high surface area for high performance supercapacitors. Materials Research Bulletin 143 (January):111457. doi:10.1016/j.materresbull.2021.111457.
  • Vinayagam, M., R. Suresh Babu, A. Sivasamy, and A. L. F. de Barros. 2021. Biomass-derived porous activated carbon nanofibers from Sapindus trifoliatus nut shells for high-performance symmetric supercapacitor applications. Carbon Letters 31 (6):1133–43. doi:10.1007/s42823-021-00235-4.
  • Wang, Y., R. Liu, Y. Tian, Z. Sun, Z. Huang, X. Wu, and B. Li. 2020. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chemical Engineering Journal 384 (June):123263. doi:10.1016/j.cej.2019.123263.
  • Wang, J., P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, and X. Zhang. 2017. Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A 5 (6):2411–28. doi:10.1039/c6ta08742f.
  • Wang, J., L. Shen, Y. Xu, H. Dou, and X. Zhang. 2015. Lamellar-structured biomass-derived phosphorus- and nitrogen-co-doped porous carbon for high-performance supercapacitors. New Journal of Chemistry 39 (12):9497–503. doi:10.1039/c5nj02080h.
  • Wang, G., L. Zhang, and J. Zhang. 2012. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 41 (2):797–828. doi:10.1039/c1cs15060j.
  • Xie, D., X. H. Xia, W. J. Tang, Y. Zhong, Y. D. Wang, D. H. Wang, X. L. Wang, and J. P. Tu. 2017. Novel carbon channels from loofah sponge for construction of metal sulfide/carbon composites with robust electrochemical energy storage. Journal of Materials Chemistry A 5 (16):7578–85. doi:10.1039/c7ta01154g.
  • Yakaboylu, G. A., C. Jiang, T. Yumak, J. W. Zondlo, J. Wang, and E. M. Sabolsky. 2021. Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renewable Energy 163:276–87. doi:10.1016/j.renene.2020.08.092.
  • Yang, Z., J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu. 2011. Electrochemical energy storage for green grid: Status and challenges. ECS Meeting Abstracts 111 (5):3577–613. doi:10.1149/ma2011-02/4/155.
  • Yetri, Y., A. T. Hoang, D. Mursida, D. Muldarisnur, E. Chau, M. Q. Taer, and M. Q. Chau. 2020. Synthesis of activated carbon monolith derived from cocoa pods for supercapacitor electrodes application. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 00 (00):1–15. doi:10.1080/15567036.2020.1811433.
  • Zhang, Y., H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang. 2009. Progress of electrochemical capacitor electrode materials: A review. International Journal of Hydrogen Energy 34 (11):4889–99. doi:10.1016/j.ijhydene.2009.04.005.
  • Zhang, H., Z. Wang, X. Li, M. Zhu, and J. Zhou. 2022. A flake-like N, O co-doped hierarchical porous carbon derived from chitin with enhanced supercapacitance. Journal of Alloys and Compounds 924:166534. doi:10.1016/j.jallcom.2022.166534.
  • Zhao, N., P. Zhang, D. Luo, W. Xiao, L. Deng, and F. Qiao. 2019. Direct production of porous carbon nanosheets/particle composites from wasted litchi shell for supercapacitors. Journal of Alloys and Compounds 788:677–84. doi:10.1016/j.jallcom.2019.02.304.
  • Zheng, K., Y. Li, M. Zhu, X. Yu, M. Zhang, L. Shi, and J. Cheng. 2017. The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors. Journal of Power Sources 366:270–77. doi:10.1016/j.jpowsour.2017.09.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.