422
Views
1
CrossRef citations to date
0
Altmetric
Review Article

“Optimal placement and sizing of distributed generation in power distribution system: a comprehensive review”

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 7160-7185 | Received 01 Dec 2022, Accepted 16 May 2023, Published online: 04 Jun 2023

References

  • Abdelaziz, A. Y., E. S. Ali, and S. M. Abd Elazim. 2016. Flower pollination algorithm and loss sensitivity factors for optimal sizing and placement of capacitors in radial distribution systems. International Journal of Electrical Power & Energy Systems 78:207–14. doi:10.1016/j.ijepes.2015.11.059.
  • Abu-Mouti, F. S., and M. E. El-Hawary. 2011. Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm. IEEE Transactions on Power Delivery 26 (4):2090–101. doi:10.1109/TPWRD.2011.2158246.
  • Acharya, N., P. Mahat, and N. Mithulananthan. 2006. An analytical approach for DG allocation in primary distribution network. International Journal of Electrical Power & Energy Systems 28 (10):669–78. doi:10.1016/j.ijepes.2006.02.013.
  • Ahmadigorji, M., N. Amjady, and S. Dehghan. 2018. A robust model for multiyear distribution network reinforcement planning based on information-gap decision theory. IEEE Transactions on Power Systems 33(2):1339–51. Mar . doi: 10.1109/TPWRS.2017.2732447.
  • Akbar, M. I., S. A. A. Kazmi, O. Alrumayh, Z. A. Khan, A. Altamimi, and M. M. Malik. 2022. A novel hybrid optimization-based algorithm for the single and multi-objective achievement with optimal DG allocations in distribution networks. IEEE Access 10:25669–87. doi:10.1109/ACCESS.2022.3155484.
  • Al Busaidi, A. S., H. A. Kazem, A. H. Al-Badi, and M. Farooq Khan. 2016. A review of optimum sizing of hybrid PV–Wind renewable energy systems in Oman. Renewable & Sustainable Energy Reviews 53 (C):185–93. doi:10.1016/j.rser.2015.08.039.
  • Ali, M. H., S. Kamel, M. H. Hassan, M. Tostado-Véliz, and H. M. Zawbaa. 2022. An improved wild horse optimization algorithm for reliability based optimal DG planning of radial distribution networks. Energy Reports 8:582–604. doi:10.1016/j.egyr.2021.12.023.
  • Al-Sabounchi, A., J. Gow, and M. Al-Akaidi. 2014. Simple procedure for optimal sizing and location of a single photovoltaic generator on radial distribution feeder. IET Renewable Power Generation 8 (2):160–70. doi:10.1049/iet-rpg.2012.0203.
  • Aman, M. M., G. B. Jasmon, A. H. A. Bakar, and H. Mokhlis. 2014. A new approach for optimum simultaneous multi-DG distributed generation units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm. Energy 66:202–15. Mar. doi:10.1016/j.energy.2013.12.037.
  • Aman, M. M., G. B. Jasmon, H. Mokhlis, and A. H. A. Bakar. 2012. Optimal placement and sizing of a DG based on a new power stability index and line losses. International Journal of Electrical Power & Energy Systems 43 (1):1296–304. doi:10.1016/j.ijepes.2012.05.053.
  • Aman, M. A., X. C. Ren, W. U. K. Tareen, M. A. Khan, M. R. Anjum, A. M. Hashmi, H. Ali, I. Bari, J. Khan, S. Ahmad, et al. 2022. Optimal siting of distributed generation unit in power distribution system considering voltage profile and power losses. Mathematical Problems in Engineering 2022:1–14. Jan. doi:10.1155/2022/5638407.
  • Amutha, W. M., and V. Rajini. 2015. Techno-economic evaluation of various hybrid power systems for rural telecom. Renewable & Sustainable Energy Reviews 43:553–61. doi:10.1016/j.rser.2014.10.103.
  • Atwa, Y. M., and E. F. El-Saadany. 2011. Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems. IET Renewable Power Generation 5(1):79–88. Jan . doi: 10.1049/iet-rpg.2009.0011.
  • Ayele, G. T., M. T. Mabrouk, P. Haurant, B. Laumert, and B. Lacarrière. 2019. Optimal placement and sizing of heat pumps and heat only boilers in a coupled electricity and heating networks. Energy 182:122–34. doi:10.1016/j.energy.2019.06.018.
  • Azad, S., M. M. Amiri, M. N. Heris, A. Mosallanejad, and M. T. Ameli. 2021. A novel analytical approach for optimal placement and sizing of distributed generations in radial electrical energy distribution systems. Sustainability 13 (18, Art. no. 18):10224. Jan. doi: 10.3390/su131810224.
  • Azimi, R., M. Ghayekhloo, and M. Ghofrani. 2016. A hybrid method based on a new clustering technique and multilayer perceptron neural networks for hourly solar radiation forecasting. Energy Conversion & Management 118:331–44. doi:10.1016/j.enconman.2016.04.009.
  • Babu, P. V. and R. Dahiya. 2014. ‘Direct search approach for multiple distributed generator allocation in radial distribution systems’, in 2014 6th IEEE Power India International Conference (PIICON), Delhi, India, Dec. pp. 1–6.
  • Baghaee, H. R., M. Mirsalim, G. B. Gharehpetian, and H. A. Talebi. 2016. Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system. Energy 115 (1):1022–41. doi:10.1016/j.energy.2016.09.007.
  • Borowy, B. S., and Z. M. Salameh. 1996. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Transactions on Energy Conversion 11(2):367–75. Jun . doi: 10.1109/60.507648.
  • Bouchekara, H. R. E. H. 2019. Electrostatic discharge algorithm: A novel nature-inspired optimisation algorithm and its application to worst-case tolerance analysis of an EMC filter. IET Science, Measurement & Technology 13 (4):491–99. doi:10.1049/iet-smt.2018.5194.
  • Bukar, A. L., C. Wei Tan, and K. Yiew Lau. 2019. Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Solar Energy 188:685–96. doi:10.1016/j.solener.2019.06.050.
  • Cano, A., F. Jurado, H. Sánchez, L. M. Fernández, and M. Castañeda. 2014. Optimal sizing of stand-alone hybrid systems based on PV/WT/FC by using several methodologies. Journal of the Energy Institute 87(4):330–40. Nov . doi: 10.1016/j.joei.2014.03.028.
  • Chedid, R., and A. Sawwas. 2019. Optimal placement and sizing of photovoltaics and battery storage in distribution networks. Energy Storage 1 (4):e46. doi:10.1002/est2.46.
  • Country rankings. /Statistics/View-Data-by-Topic/Capacity-and-Generation/Country-Rankings.).
  • Dashtdar, M., M. Najafi, and M. Esmaeilbeig. 2021. Reducing LMP and resolving the congestion of the lines based on placement and optimal size of DG in the power network using the GA-GSF algorithm. Electrical Engineering 103(2):1279–306. Apr . doi: 10.1007/s00202-020-01142-z.
  • Delfanti, M., D. Falabretti, and M. Merlo. 2013. Dispersed generation impact on distribution network losses. Electric Power Systems Research 97:10–18. doi:10.1016/j.epsr.2012.11.018.
  • Demolli, H., A. S. Dokuz, A. Ecemis, and M. Gokcek. 2021. Location‐based optimal sizing of hybrid renewable energy systems using deterministic and heuristic algorithms. International Journal of Energy Research 45(11):16155–75. Sep . doi: 10.1002/er.6849.
  • Deng, Y. and H. Duan. 2015. Chaotic mutated bat algorithm optimized edge potential function for target matching. in 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, Jun. pp. 1049–53.
  • Devi, S., and M. Geethanjali. 2014. Optimal location and sizing of distribution static synchronous series compensator using particle swarm optimization. International Journal of Electrical Power & Energy Systems 62:646–53. doi:10.1016/j.ijepes.2014.05.021.
  • Elattar, E. E., and S. K. Elsayed. 2020. Optimal location and sizing of distributed generators based on renewable energy sources using modified moth flame optimization technique. IEEE Access 8:109625–38. doi:10.1109/ACCESS.2020.3001758.
  • El-Zonkoly, A. M. 2011. Optimal placement of multi-distributed generation units including different load models using particle swarm optimization. Swarm and Evolutionary Computation 1 (1):50–59. doi:10.1016/j.swevo.2011.02.003.
  • Fadaeenejad, M., M. A. M. Radzi, M. Z. A. AbKadir, and H. Hizam. 2014. Assessment of hybrid renewable power sources for rural electrification in Malaysia. Renewable & Sustainable Energy Reviews 30:299–305. doi:10.1016/j.rser.2013.10.003.
  • Fathy, A. 2016. A reliable methodology based on mine blast optimization algorithm for optimal sizing of hybrid PV-Wind-FC system for remote area in Egypt. Renewable Energy 95:367–80. doi:10.1016/j.renene.2016.04.030.
  • Gallego Pareja, L. A., J. M. López-Lezama, and O. Gómez Carmona. 2022. A mixed-integer linear programming model for the simultaneous optimal distribution network reconfiguration and optimal placement of distributed generation. Energies 15(9, Art. no. 9):3063. Jan . doi: 10.3390/en15093063.
  • Gampa, S. R., S. Makkena, P. Goli, and D. Das. 2022. FPA pareto optimality-based multi-objective approach for capacitor placement and reconductoring of urban distribution systems with solar DG units. International Journal of Ambient Energy 43 (1):1581–97. doi:10.1080/01430750.2020.1713887.
  • Ganguly, S., and D. Samajpati. 2015. Distributed generation allocation on radial distribution networks under uncertainties of load and generation using genetic algorithm. IEEE Transactions on Sustainable Energy 6(3):688–97. Jul . doi: 10.1109/TSTE.2015.2406915.
  • Geleta, D. K., and M. S. Manshahia. 2020. ‘Gravitational search algorithm‐based optimization of hybrid wind and solar renewable energy system’. Computational Intelligence 38 (3, p. coin.12336):1106–32. May. doi: 10.1111/coin.12336.
  • Ghosh, S., S. Prasad Ghoshal, and S. Ghosh. 2010. Optimal Sizing and Placement of Distributed Generation in a Network System. International Journal of Electrical Power & Energy Systems 32 (8):849–56. doi:10.1016/j.ijepes.2010.01.029.
  • Gözel, T., and M. Hakan Hocaoglu. 2009. An analytical method for the sizing and siting of distributed generators in radial systems. Electric Power Systems Research 79 (6):912–18. doi:10.1016/j.epsr.2008.12.007.
  • Grisales-Noreña, L. F., O. D. Montoya, R. A. Hincapié-Isaza, M. Granada Echeverri, and A. -J. Perea-Moreno. 2021. Optimal location and sizing of DGs in DC networks using a hybrid methodology based on the PPBIL algorithm and the VSA. Mathematics 9 (16, Art. no. 16):1913. Jan. doi: 10.3390/math9161913.
  • Grisales-Noreña, L. F., O. D. Montoya, C. A. Ramos-Paja, Q. Hernandez-Escobedo, and A. -J. Perea-Moreno. 2020. Optimal location and sizing of distributed generators in DC networks using a hybrid method based on parallel PBIL and PSO. Electronics 9(11, Art. no. 11):1808. Nov . doi: 10.3390/electronics9111808.
  • Gümüş, T. E., S. Emiroglu, and M. A. Yalcin. 2023. Optimal DG allocation and sizing in distribution systems with thevenin based impedance stability index. International Journal of Electrical Power & Energy Systems 144:108555. Jan. doi: 10.1016/j.ijepes.2022.108555.
  • Gupta, K., R. Achathuparambil Narayanankutty, K. Sundaramoorthy, and A. Sankar. 2020. ‘Optimal location identification for aggregated charging of electric vehicles in solar photovoltaic powered microgrids with reduced distribution losses’. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–16. Mar. doi:10.1080/15567036.2020.1745335.
  • Hailu Kebede, M., and G. Bekele Beyene. 2018. Feasibility study of PV-Wind-fuel cell hybrid power system for electrification of a rural village in Ethiopia. Journal of Electrical and Computer Engineering 2018:e4015354. Sep. doi: 10.1155/2018/4015354.
  • Hatata, A. Y., G. Osman, and M. M. Aladl. 2018. An optimization method for sizing a solar/wind/battery hybrid power system based on the artificial immune system. Sustainable Energy Technologies and Assessments 27:83–93. Jun. doi: 10.1016/j.seta.2018.03.002.
  • Hemdan, N. G., and M. Kurrat. 2011. Efficient integration of distributed generation for meeting the increased load demand. International Journal of Electrical Power & Energy Systems 33 (9):1572–83. doi:10.1016/j.ijepes.2011.06.032.
  • Hien, N. C., N. Mithulananthan, and R. C. Bansal. 2013. Location and sizing of distributed generation units for loadability enhancement in primary feeder. IEEE Systems Journal 7(4):797–806. Dec . doi: 10.1109/JSYST.2012.2234396.
  • Hung, D. Q., N. Mithulananthan, and R. C. Bansal. 2010. Analytical expressions for DG allocation in primary distribution networks. IEEE Transactions on Energy Conversion 25(3):814–20. Sep . doi: 10.1109/TEC.2010.2044414.
  • Hung, D. Q., N. Mithulananthan, and R. C. Bansal. 2013. Analytical strategies for renewable distributed generation integration considering energy loss minimization. Applied Energy 105 (C):75–85. doi:10.1016/j.apenergy.2012.12.023.
  • Iqbal, F., M. Tauseef Khan, and A. Shahzad Siddiqui. 2018. Optimal placement of DG and DSTATCOM for loss reduction and voltage profile improvement. Alexandria Engineering Journal 57 (2):755–65. doi:10.1016/j.aej.2017.03.002.
  • Ishak, R., A. Mohamed, A. N. Abdalla, and M. Z. Che Wanik. 2014. Optimal placement and sizing of distributed generators based on a novel MPSI index. International Journal of Electrical Power & Energy Systems 60:389–98. doi:10.1016/j.ijepes.2014.03.044.
  • Jeyaprabha, S. B., and A. Immanuel Selvakumar. 2015. Optimal sizing of photovoltaic/battery/diesel based hybrid system and optimal tilting of solar array using the artificial intelligence for remote houses in India. Energy & Buildings 96:40–52. doi:10.1016/j.enbuild.2015.03.012.
  • Jumaa, F. A., O. Muhammed Neda, A. Mustafa Mhawesh “Optimal Distributed Generation Placement using Artificial Intelligence for Improving Active Radial Distribution System | Jumaa | Bulletin of Electrical Engineering and Informatics.”|“Optimal Distributed Generation Placement using Artificial Intelligence for Improving Active Radial Distribution System | Jumaa | Bulletin of Electrical Engineering and Informatics.”|“Optimal Distributed Generation Placement using Artificial Intelligence for Improving Active Radial Distribution System | Jumaa | Bulletin of Electrical Engineering and Informatics.” (accessed Jul. 9, 2022).
  • Kalambe, S., and G. Agnihotri. 2014. Loss minimization techniques used in distribution network: bibliographical survey. Renewable & Sustainable Energy Reviews 29:184–200. doi:10.1016/j.rser.2013.08.075.
  • Karunarathne, E., J. Pasupuleti, J. Ekanayake, and D. Almeida. 2020. Optimal placement and sizing of DGs in distribution networks using MLPSO algorithm. Energies 13(23, Art. no. 23):6185. Jan . doi: 10.3390/en13236185.
  • Kashem, M. A., A. D. T. Le, M. Negnevitsky, and G. Ledwich. 2006. Distributed generation for minimization of power losses in distribution systems. in 2006 IEEE Power Engineering Society General Meeting, Montreal, Que., Canada, p. 8.
  • Kaur, S., G. Kumbhar, and J. Sharma. 2014. A MINLP technique for optimal placement of multiple DG units in distribution systems. International Journal of Electrical Power & Energy Systems 63:609–17. Dec. doi: 10.1016/j.ijepes.2014.06.023.
  • Kavitha Kumari, K. S. and R. S. R. Babu. 2020. Effective microgrid cost reduction using dragon fly optimization algorithm and firefly algorithm. in 2020 5th International Conference on Computing, Communication and Security (ICCCS), Indian Institute of Technology, Patna, India, Oct. pp. 1–5.
  • Kefayat, M., A. Lashkar Ara, and S. A. Nabavi Niaki. 2015. A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources. Energy Conversion & Management 92:149–61. doi:10.1016/j.enconman.2014.12.037.
  • Khasanov, M., S. Kamel, and H. Abdel-Mawgoud. 2019. Minimizing power loss and improving voltage stability in distribution system through optimal allocation of distributed generation using electrostatic discharge algorithm’, in 2019 21st International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, Dec. pp. 354–59.
  • Kizito, R., X. Li, K. Sun, and S. Li. 2020. Optimal distributed generator placement in utility-based microgrids during a large-scale grid disturbance. IEEE Access 8:21333–44. doi:10.1109/ACCESS.2020.2968871.
  • Koohi-Kamali, S., and N. Abd Rahim. 2016. Coordinated control of smart microgrid during and after islanding operation to prevent under frequency load shedding using energy storage system. Energy Conversion & Management 127:623–46. doi:10.1016/j.enconman.2016.09.052.
  • Kumar, A., N. K. Choudhary, and N. Singh. 2021. A comparative analysis for optimal placement and sizing of distributed generator in grid connected and islanded mode of microgrid. International Journal of Power and Energy Conversion 12(2):137. Feb . doi: 10.1504/IJPEC.2021.114486.
  • Kumari, R. V. S. L., G. V. N. Kumar, S. S. Nagaraju, and M. B. Jain. 2017. Optimal sizing of distributed generation using particle swarm optimization’, in 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Vimal Jyothi Engineering College, Kannur, Kerala, India, Jul. pp. 499–505.
  • Lopes, J. P., N. Hatziargyriou, J. Mutale, P. Djapic, and N. Jenkins. 2007. Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electric Power Systems Research 77 (9):1189–203. doi:10.1016/j.epsr.2006.08.016.
  • Mahmoud, K., N. Yorino, and A. Ahmed. 2016. Optimal distributed generation allocation in distribution systems for loss minimization. IEEE Transactions on Power Systems 31(2):960–69. Mar . doi: 10.1109/TPWRS.2015.2418333.
  • Malheiro, A., P. M. Castro, R. M. Lima, and A. Estanqueiro. 2015. Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems. Renewable Energy 83:646–57. doi:10.1016/j.renene.2015.04.066.
  • Markvart, T. 1996. Sizing of hybrid photovoltaic-wind energy systems. Solar Energy 57(4):277–81. Oct . doi: 10.1016/S0038-092X(96)00106-5.
  • Martinez, J. A., and G. Guerra. 2014. A Parallel Monte Carlo method for optimum allocation of distributed generation. IEEE Transactions on Power Systems 29(6):2926–33. Nov . doi: 10.1109/TPWRS.2014.2317285.
  • Memarzadeh, G., and F. Keynia. 2020. A new index-based method for optimal DG placement in distribution networks. Engineering Reports 2 (10):e12243. doi:10.1002/eng2.12243.
  • Montoya, O. D., L. F. Grisales-Noreña, W. Gil-González, G. Alcalá, and Q. Hernandez-Escobedo. 2020. Optimal location and sizing of PV sources in DC networks for minimizing greenhouse emissions in diesel generators. Symmetry 12 (2, Art. no. 2):322. Feb. doi: 10.3390/sym12020322.
  • Mouwafi, M. T., R. A. El-Sehiemy, and A. A. Abou El-Ela. 2022. A two-stage method for optimal placement of distributed generation units and capacitors in distribution systems. Applied Energy 307:118188. doi:10.1016/j.apenergy.2021.118188.
  • Mouwafi, M. T., R. A. El-Sehiemy, and A. A. A. El-Ela. 2022. A two-stage method for optimal placement of distributed generation units and capacitors in distribution systems. Applied Energy 307:118188. Feb. doi: 10.1016/j.apenergy.2021.118188.
  • Mtonga, T. 2019. A comparative analysis of shunt capacitors placement techniques for real power losses reduction and shunt capacitors’ cost reduction. Nov.
  • Murty, V. V. S. N., and A. Kumar. 2018. Impact of D-STATCOM in distribution systems with load growth on stability margin enhancement and energy savings using PSO and GAMS. International Transactions on Electrical Energy Systems 28 (11):e2624. doi:10.1002/etep.2624.
  • Naik, S. G., D. K. Khatod, and M. P. Sharma. 2013. Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks. International Journal of Electrical Power & Energy Systems 53:967–73. doi:10.1016/j.ijepes.2013.06.008.
  • Niknam, T., S. I. Taheri, J. Aghaei, S. Tabatabaei, and M. Nayeripour. 2011. A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources. Applied Energy 88 (12):4817–30. doi:10.1016/j.apenergy.2011.06.023.
  • Olcan, C. 2015. Multi-objective analytical model for optimal sizing of stand-alone photovoltaic water pumping systems. Energy Conversion & Management 100:358–69. doi:10.1016/j.enconman.2015.05.018.
  • O. US EPA. Distributed generation of electricity and its environmental impacts. Aug. 4, 2015.
  • Papaefthymiou, G., and D. Kurowicka. 2009. Using copulas for modeling stochastic dependence in power system uncertainty analysis. IEEE Transactions on Power Systems 24(1):40–49. Feb . doi: 10.1109/TPWRS.2008.2004728.
  • Patel, Y. P. and A. G. Patel. 2012. Placement of DG in distribution system for loss reduction. in 2012 IEEE Fifth Power India Conference, Deenbandhu Chhotu Ram, University of Science & Technology Murthal, Haryana, India, Dec. pp. 1–6.
  • Paul, S. and W. Jewell. 2012. Optimal capacitor placement and sizes for power loss reduction using combined power loss index-loss sensitivity factor and genetic algorithm. in 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, Jul. pp. 1–8.
  • Pereira, L. D., I. Yahyaoui, R. Fiorotti, L. S. de Menezes, J. F. Fardin, H. R. O. Rocha, and F. Tadeo. 2022. Optimal allocation of distributed generation and capacitor banks using probabilistic generation models with correlations. Applied Energy 307:118097. doi:10.1016/j.apenergy.2021.118097.
  • Pham, D., and D. Karaboga. 2012. “Intelligent optimisation techniques: genetic algorithms, tabu search, simulated annealing and neural networks”. Springer London: Springer Science & Business Media.
  • Pisica, I., C. Bulac, and M. Eremia. 2009. Optimal distributed generation location and sizing using genetic algorithms. in 2009 15th International Conference on Intelligent System Applications to Power Systems, Curitiba, Brazil, Nov. pp. 1–66.
  • Popović, D. H., J. A. Greatbanks, M. Begović, and A. Pregelj. 2005. Placement of distributed generators and reclosers for distribution network security and reliability. International Journal of Electrical Power & Energy Systems 27 (5–6):27.5–6. doi:10.1016/j.ijepes.2005.02.002.
  • “Power Sector at a Glance ALL INDIA | Government of India | Ministry of Power,”|“Power Sector at a Glance ALL INDIA | Government of India | Ministry of Power,”|“Power Sector at a Glance ALL INDIA | Government of India | Ministry of Power,” Power Sector at a Glance ALL INDIA |“Power Sector at a Glance ALL INDIA | Government of India | Ministry of Power,”| Ministry of Power 04 30 2023 . [ Online].
  • Prabha, D. R., and T. Jayabarathi. 2016. Optimal placement and sizing of multiple distributed generating units in distribution networks by invasive weed optimization algorithm. Ain Shams Engineering Journal 7 (2):683–94. doi:10.1016/j.asej.2015.05.014.
  • Prakash, P., and D. K. Khatod. 2016. Optimal sizing and siting techniques for distributed generation in distribution systems: a review. Renewable & Sustainable Energy Reviews 57:111–30. doi:10.1016/j.rser.2015.12.099.
  • Prakash, P., and D. C. Meena. 2021. Optimal siting of solar based distributed generation (DG) in distribution system for constant power load model. International Journal of Emerging Electric Power Systems 22(5):595–606. Oct . doi: 10.1515/ijeeps-2021-0050.
  • Prakash, P., D. C. Meena, H. Malik, M. A. Alotaibi, and I. A. Khan. 2022. A novel analytical approach for optimal integration of renewable energy sources in distribution systems. Energies 15(4, Art. no. 4):1341. Jan . doi: 10.3390/en15041341.
  • Prasad, C. H., K. Subbaramaiah, and P. Sujatha. 2019. Cost–benefit analysis for optimal DG placement in distribution systems by using elephant herding optimization algorithm. Renewables: Wind, Water, and Solar 6(1):2. Dec . doi: 10.1186/s40807-019-0056-9.
  • Protogeropoulos, C., B. J. Brinkworth, and R. H. Marshall. 1997. Sizing and techno-economical optimization for hybrid solar photovoltaic/wind power systems with battery storage. International Journal of Energy Research 21 (6):465–79. doi:10.1002/(SICI)1099-114X(199705)21:6<465::AID-ER273>3.0.CO;2-L.
  • Rajendran, A., and K. Narayanan. 2020. Optimal multiple installation of DG and capacitor for energy loss reduction and loadability enhancement in the radial distribution network using the hybrid WIPSO–GSA algorithm. International Journal of Ambient Energy 41(2):129–41. Jan . doi: 10.1080/01430750.2018.1451371.
  • Ramamoorthy, A., and R. Ramachandran. 2016. Optimal siting and sizing of multiple DG units for the enhancement of voltage profile and loss minimization in transmission systems using nature inspired algorithms. Scientific World Journal 2016:1–16. doi:10.1155/2016/1086579.
  • Ramavat, S. R., S. P. Jaiswal, N. Goel, and V. Shrivastava. 2019. Optimal location and sizing of DG in distribution system and its cost–benefit analysis. In Applications of artificial intelligence techniques in engineering 103–12. Singapore.
  • Raoofat, M., and A. R. Malekpour. 2011. Optimal allocation of distributed generations and remote controllable switches to improve the network performance considering operation strategy of distributed generations. Electric Power Components & Systems 39(16):1809–27. Oct . doi: 10.1080/15325008.2011.615799.
  • Rau, N. S., and Y. -H. Wan. 1994. Optimum location of resources in distributed planning. IEEE Transactions on Power Systems 9(4):2014–20. Nov . doi: 10.1109/59.331463.
  • Reddy, P. D. P., V. C. V. Reddy, and T. G. Manohar. 2017. Whale optimization algorithm for optimal sizing of renewable resources for loss reduction in distribution systems. Renewables: Wind, Water, and Solar 4(1):3. Dec . doi: 10.1186/s40807-017-0040-1.
  • Rugthaicharoencheep, N., and S. Auchariyamet. 2012. Technical and economic impacts of distributed generation on distribution system. International Journal of Electrical and Computer Engineering 6(4):385–89. Apr.
  • Saraisuwan, P., P. Jirapong, A. Kalankul, and S. Premrudeepreechacharn. 2011. Allocation planning tool for determining the optimal location and sizing of distributed generations in provincial electricity authority of Thailand. in 2011 International Conference & Utility Exhibition on Power and Energy Systems: Issues and Prospects for Asia (ICUE), Pattaya, Thailand. Sep. pp. 1–8.
  • Selim, A., S. Kamel, and F. Jurado. 2020. Optimal allocation of distribution static compensators using a developed multi-objective sine cosine approach. Computers & Electrical Engineering 85:106671. doi:10.1016/j.compeleceng.2020.106671.
  • Selim, A., S. Kamel, F. Jurado, J. A. P. Lopes, and M. Matos. 2021. Optimal setting of PV and battery energy storage in radial distribution systems using multi-objective criteria with fuzzy logic decision-making. IET Generation, Transmission & Distribution 15 (1):135–48. doi:10.1049/gtd2.12019.
  • Shaheen, A., A. Elsayed, A. Ginidi, R. El-Sehiemy, and E. Elattar. 2022. Reconfiguration of electrical distribution network-based DG and capacitors allocations using artificial ecosystem optimizer: practical case study. Alexandria Engineering Journal 61 (8):6105–18. doi:10.1016/j.aej.2021.11.035.
  • Shaik, M. A., P. Lalitha Mareddy, and N. Visali. 2022. Enhancement of voltage profile in the distribution system by reconfiguring with DG placement using equilibrium optimizer. Alexandria Engineering Journal 61 (5):4081–93. doi:10.1016/j.aej.2021.09.063.
  • Siddiqui, A. S., and Prashant. 2022. Optimal location and sizing of conglomerate DG- FACTS using an artificial neural network and heuristic probability distribution methodology for modern power system operations. Protection and Control of Modern Power Systems 7(1):9. Mar . doi: 10.1186/s41601-022-00230-5.
  • Sidrach-de-Cardona, M., and L. Mora Lopez. 1998. A simple model for sizing standalone photovoltaic systems. Solar Energy Materials and Solar Cells 55 (3):199–214. doi:10.1016/S0927-0248(98)00093-2.
  • Singh, B., V. Mukherjee, and P. Tiwari. 2015. A survey on impact assessment of DG and FACTS controllers in power systems. Renewable & Sustainable Energy Reviews 42 (C):846–82. doi:10.1016/j.rser.2014.10.057.
  • Sinha, S., and S. S. Chandel. 2014. Review of software tools for hybrid renewable energy systems. Renewable & Sustainable Energy Reviews 32:192–205. doi:10.1016/j.rser.2014.01.035.
  • Sundhararajan, S., and A. Pahwa. 1994. Optimal selection of capacitors for radial distribution systems using a genetic algorithm. IEEE Transactions on Power Systems 9(3):1499–507. Aug . doi: 10.1109/59.336111.
  • Suresh, M. C. V., and E. J. Belwin. 2018. Optimal DG placement for benefit maximization in distribution networks by using Dragonfly algorithm. Renewables: Wind, Water, and Solar 5(1):4. Dec . doi: 10.1186/s40807-018-0050-7.
  • Taher, S. A., and M. Hossein Karimi. 2014. Optimal reconfiguration and DG allocation in balanced and unbalanced distribution systems. Ain Shams Engineering Journal 5 (3):735–49. doi:10.1016/j.asej.2014.03.009.
  • Tito, S. R., T. T. Lie, and T. N. Anderson. 2016. Optimal sizing of a wind-photovoltaic-battery hybrid renewable energy system considering socio-demographic factors. Solar Energy 136:525–32. doi:10.1016/j.solener.2016.07.036.
  • Tsalides, P. H., and A. Thanailakis. 1986. Loss-of-load probability and related parameters in optimum computer-aided design of stand-alone photovoltaic systems. Solar Cells 18 (2):115–27. doi:10.1016/0379-6787(86)90030-X.
  • Ugranlı, F., and E. Karatepe. 2013. Optimal wind turbine sizing to minimize energy loss. International Journal of Electrical Power & Energy Systems 53:656–63. doi:10.1016/j.ijepes.2013.05.035.
  • Viral, R., and D. Kumar Khatod. 2015. An analytical approach for sizing and siting of Dgs in balanced radial distribution networks for loss minimization. International Journal of Electrical Power & Energy Systems 67:191–201. doi:10.1016/j.ijepes.2014.11.017.
  • Yammani, C., S. Maheswarapu, and S. K. Matam. 2016. Optimal placement and sizing of distributed generations using shuffled bat algorithm with future load enhancement. International Transactions on Electrical Energy Systems 26 (2):274–92. doi:10.1002/etep.2076.
  • Yuvaraj, T., K. Ravi, and K. R. Devabalaji. 2017. Optimal allocation of DG and DSTATCOM in radial distribution system using cuckoo search optimization algorithm. Modelling & Simulation in Engineering 2017:e2857926. Feb. doi: 10.1155/2017/2857926.
  • Zahraee, S. M., M. Khalaji Assadi, and R. Saidur. 2016. Application of artificial intelligence methods for hybrid energy system optimization. Renewable & Sustainable Energy Reviews 66 (C):617–30. doi:10.1016/j.rser.2016.08.028.
  • Zhao, Y., Y. An, and Q. Ai. 2014. Research on size and location of distributed generation with vulnerable node identification in the active distribution network. IET Generation, Transmission & Distribution 8 (11):1801–09. doi:10.1049/iet-gtd.2013.0887.
  • Zhou, W., C. Lou, Z. Li, L. Lu, and H. Yang. 2010. Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Applied Energy 87 (2):380–89. doi:10.1016/j.apenergy.2009.08.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.