137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Oxidative combustion law of water-soaked coal under oxygen-lean condition

ORCID Icon, , , , &
Pages 7008-7018 | Received 16 Nov 2022, Accepted 28 Mar 2023, Published online: 30 May 2023

References

  • Bu, Y., H. Niu, H. Wang, T. Qiu, H. Chen, and D. Xue. 2023. Characteristics of lean oxygen combustion and dynamic microreaction process of water-soaked coal. Fuel 332:126010. doi:10.1016/j.fuel.2022.126010.
  • Bu, Y., Y. Xu, M. Chen, and Z. Liu. 2020. Effect mechanism of initial oxidation temperature on secondary oxidation characteristics for soaked long-flame coal. Journal of Safety Science & Technology 16:64–69.
  • Chen, J., M. Lin, J. Cai, H. Yin, X. Song, and A. Li. 2015. Thermal characteristics and kinetics of refining and chemicals wastewater, lignite and their blends during combustion. Energy Conversion & Management 100:201–11. doi:10.1016/j.enconman.2015.05.016.
  • Deng, J., J. Zhao, Y. Zhang, A. Huang, X. Liu, X. Zhai, and C. Wang. 2016. Thermal analysis of spontaneous combustion behavior of partially oxidized coal. Process Safety and Environmental Protection 104:218–24. doi:10.1016/j.psep.2016.09.007.
  • Ghosh, A., and D. Choudhury. 2022. Spontaneous combustion in relation to drying of low rank coal. International Journal of Coal Preparation & Utilization 104:218–24. doi:10.1080/19392699.2020.1724106.
  • Green, U., Z. Aizenshtat, L. Metzger, and H. Cohen. 2013. Field and laboratory simulation study of hot spots in stockpiled bituminous coal. Energy Fuel 26:7230–35. doi:10.1021/ef301474t.
  • Han, Y., Z. Bai, J. Liao, J. Bai, X. Dai, X. Li, J. Xu, and W. Li. 2016. Effects of phenolic hydroxyl and carboxyl groups on the concentration of different forms of water in brown coal and their dewatering energy. Fuel Processing Technology 154:7–18. doi:10.1016/j.fuproc.2016.08.006.
  • Kizgut, S., and S. Yilmaz. 2004. Characterization and non-isothermal decomposition kinetics of some Turkish bituminous coals by thermal analysis. Fuel Processing Technology 85:103–11. doi:10.1016/S0378-3820(03)00111-5.
  • Li, J., Z. Li, C. Wang, Y. Yang, and X. Zhang. 2018. Experimental study on the inhibitory effect of ethylenediaminetetraacetic acid (EDTA) on coal spontaneous combustion. Fuel Processing Technology 178:312–21. doi:10.1016/j.fuproc.2018.06.007.
  • Li, J., Z. Li, Y. Yang, J. Niu, and Q. Meng. 2019. Insight into the chemical reaction process of coal self-heating after N2 drying. Fuel 255:115780. doi:10.1016/j.fuel.2019.115780.
  • Lu, W., J. Li, J. Li, Q. He, W. Hao, and Z. Li. 2021. Oxidative kinetic characteristics of dried soaked coal and its related spontaneous combustion mechanism. Fuel 305:121626. doi:10.1016/j.fuel.2021.121626.
  • Parsa, M., and A. Chaffee. 2019. The effect of densification with alkali hydroxides on brown coal self-heating behaviour and physico-chemical properties. Fuel 240:299–308. doi:10.1016/j.fuel.2018.11.098.
  • Qi, X., Q. Li, H. Zhang, and H. Xin. 2017. Thermodynamic characteristics of coal reaction under low Co conditions. Journal of the Energy Institute 90:544–55. doi:10.1016/j.joei.2016.05.007.
  • Shi, L., Q. Liu, X. Guo, W. Wu, and Z. Liu. 2013. Pyrolysis behavior and bonding information of coal-A TGA study. Fuel Processing Technology 108:125–32. doi:10.1016/j.fuproc.2012.06.023.
  • Shi, X., Y. Zhang, X. Chen, Y. Zhang, and T. Ma. 2021. Numerical study on the oxidation reaction characteristics of coal under temperature-programmed conditions. Fuel Processing Technology 213:106671. doi:10.1016/j.fuproc.2020.106671.
  • Song, S., B. Qin, H. Xin, X. Qin, and K. Chen. 2018. Exploring effect of water immersion on the structure and low-temperature oxidation of coal: A case study of Shendong long flame coal, China. Fuel 234:732–37. doi:10.1016/j.fuel.2018.07.074.
  • Tian, B., Y. Qiao, X. Lin, Y. Jiang, L. Xu, and X. Ma. 2018. Tian. Correlation between bond structures and volatile composition of Jining bituminous coal during fast pyrolysis. Fuel Processing Technology 179:99–107. doi:10.1016/j.fuproc.2018.06.019.
  • Wang, H., B. Dlugogorski, and E. Kennedy. 2003. Role of inherent water in low-temperature oxidation of coal. Combustion Science and Technology 175:253–70. doi:10.1080/00102200302406.
  • Xu, Y., Y. Bu, and L. Wang. 2021. Re-ignition characteristics of the long-flame coal affected by high-temperature oxidization & water immersion. Journal of Cleaner Production 315:128064. doi:10.1016/j.jclepro.2021.128064.
  • Yang, Y., Z. Li, L. Si, F. Gu, Y. Zhou, Q. Qi, and X. Sun. 2017. Study governing the impact of long-term water immersion on coal spontaneous ignition. Arabian Journal for Science & Engineering 42:1359–69. doi:10.1007/s13369-016-2245-9.
  • Zhai, X., B. Wang, K. Wang, and D. Obracaj. 2019. Study on the influence of water immersion on the characteristic parameters of spontaneous combustion oxidation of low-rank bituminous coal. Combustion Science and Technology 191:1101–22. doi:10.1080/00102202.2018.1511544.
  • Zhao, H., J. Yu, J. Liu, and A. Tahmasebi. 2015. Experimental study on the self-heating characteristics of Indonesian lignite during low temperature oxidation. Fuel 150:55–63. doi:10.1016/j.fuel.2015.01.108.
  • Zhao, J., W. Wang, P. Fu, J. Wang, and G. Feng. 2021. Evaluation of the spontaneous combustion of soaked coal based on a temperature-programmed test system and in-situ FTIR. Fuel 294:120583. doi:10.1016/j.fuel.2021.120583.
  • Zhao, J., Y. Zhang, J. Song, T. Zhang, H. Ming, S. Lu, J. Deng, and C. Shu. 2022. Microstructure of coal spontaneous combustion in low-oxygen atmospheres at characteristic temperatures. Fuel 309:122132. doi:10.1016/j.fuel.2021.122132.
  • Zhong, X., L. Kan, H. Xin, B. Qin, and G. Dou. 2019. Thermal effects and active group differentiation of low-rank coal during low-temperature oxidation under vacuum drying after water immersion. Fuel 236:1204–12. doi:10.1016/j.fuel.2018.09.059.
  • Zhou, B., S. Yang, C. Wang, X. Hu, W. Song, J. Cai, Q. Xu, and N. Sang. 2019. The characterization of free radical reaction in coal low-temperature oxidation with different Co. Fuel 262:116524. doi:10.1016/j.fuel.2019.116524.
  • Zhou, C., Y. Zhang, J. Wang, S. Xue, J. Wu, and L. Chang. 2017. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal. International Journal of Coal Geology 171:212–22. doi:10.1016/j.coal.2017.01.013.
  • Zhou, F., H. Shao, J. Li, X. Zhang, and B. Shi. 2010. Experimental research on combustion product formation during coal spontaneous combustion under reduced cos. Journal of China University of Mining & Technology 39:808–11.
  • Zhu, H., H. Zhao, H. Wei, W. Wang, H. Wang, K. Li, X. Lu, and B. Tan. 2020. Investigation into the thermal behavior and FTIR micro-characteristics of re-oxidation coal. Combustion & Flame 216:354–68. doi:10.1016/j.combustflame.2020.03.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.