81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study on improving the performance of a parabolic concentrator solar tracking-tubular solar still (PCST-TSS) using negative static pressure

, , , , , & show all
Pages 6655-6677 | Received 20 Mar 2023, Accepted 16 May 2023, Published online: 24 May 2023

References

  • Ahmed, M. S. 2023. A numerical investigation of PVT system performance with various cooling configurations. Energies 16:3052. doi:10.3390/en16073052.
  • Ahmed, M. M. Z., F. Alshammari, A. S. Abdullah, and M. Elashmawy. 2021a. Basin and tubular solar distillation systems: A review. Process Safety and Environmental Protection 150:157–78. doi:10.1016/j.psep.2021.04.015.
  • Ahmed, M. M. Z., F. Alshammari, A. S. Abdullah, and M. Elashmawy. 2021b. Enhancing tubular solar still performance using double effect with direct sunrays concentration. Solar Energy Materials & Solar Cells 230:111214. doi:10.1016/j.solmat.2021.111214.
  • Ahmed, M. M. Z., F. Alshammari, A. S. Abdullah, and M. Elashmawy. 2021c. Experimental investigation of a low cost inclined wick solar still with forced continuous flow. Renewable Energy 179:319–26. doi:10.1016/j.renene.2021.07.059.
  • Ahmed, M. M. Z., F. Alshammari, I. Alatawi, M. Alhadri, and M. Elashmawy. 2022. A novel solar desalination system integrating inclined and tubular solar still with parabolic concentrator. Applied Thermal Engineering 213:118665. doi:10.1016/j.applthermaleng.2022.118665.
  • Ahmed, M. M. Z., F. Alshammari, U. F. Alqsair, M. Alhadri, A. S. Abdullah, and M. Elashmawy. 2022. Experimental study on the effect of the black wick on tubular solar still performance. Case Studies in Thermal Engineering 38:102333. doi:10.1016/j.csite.2022.102333.
  • Ahsan, A., and T. Fukuhara. 2010. Mass and heat transfer model of tubular solar still. Solar Energy 84:1147–56. doi:10.1016/j.solener.2010.03.019.
  • Akrout, H., K. Hidouri, B. Chaouachi, and R. Ben Slama. 2021. Modeling and simulation of water production for different solar still heights and condensation surfaces. Desalination & Water Treatment 213:26–34. doi:10.5004/dwt.2021.26679.
  • Alatawi, I., S. Alshammari, M. M. Z. Ahmed, U. F. Alqsair, A. S. Abdullah, and M. Elashmawy. 2022. Experimental study on the inclined solar still with single-axis solar tracking: Thermo-economic approach. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44:3) 6942–6956. doi:10.1080/15567036.2022.2104969.
  • Alatawi, I., A. Khaliq, A. M. A. Heniegal, G. B. Abdelaziz, and M. Elashmawy. 2022. Tubular solar stills: Recent developments and future. Solar Energy Materials and Solar Cells 242:111785. doi:10.1016/j.solmat.2022.111785.
  • Alatawi, I., T. Subhani, M. M. Z. Ahmed, U. F. Alqsair, A. S. Abdullah, and M. Elashmawy. 2022. Experimental investigation of a developed tubular solar still with longitudinal wicked fins. Renewable Energy 193:1074–81. doi:10.1016/j.renene.2022.05.081.
  • Alhadri, M., I. Alatawi, F. Alshammari, M. A. Haleem, A. M. A. Heniegal, G. B. Abdulaziz, M. M. Z. Ahmed, U. F. Alqsair, A. E. Kabeel, and M. Elashmawy. 2022. Design of a low-cost parabolic concentrator solar tracking system: Tubular solar still application. Journal of Solar Energy Engineering 144: 051006-1. doi: 10.1115/1.4054232.
  • Alshammari, F., M. Elashmawy, and M. M. Z. Ahmed. 2021. Cleaner production of freshwater using multi-effect tubular solar still. Journal of Cleaner Production 281:125301. doi:10.1016/j.jclepro.2020.125301.
  • Aly, W. I. A., M. A. Tolba, and M. Abdelmagied. 2023. Experimental investigation and performance evaluation of an oval tubular solar still with phase change material. Applied Thermal Engineering 221:119628. doi:10.1016/j.applthermaleng.2022.119628.
  • Ambarita, H. 2016. Study on the performance of natural vacuum desalination system using low grade heat source. Case Studies in Thermal Engineering 8:346–58. doi:10.1016/j.csite.2016.09.005.
  • Bassam, A. K., and M. Hamzeh. 2003. Experimental study of a solar still with sponge cubes in basin. Energy Conversion & Management 44:1411–18. doi:10.1016/S0196-8904(02)00162-0.
  • Chen, W. L., and G. Xie. 2022. Performance of multi-stage tubular solar still operating under vacuum. Renewable Energy 201:34–46. doi:10.1016/j.renene.2022.11.023.
  • Chen, Z., Y. Yao, Z. Zheng, H. Zheng, Y. Yang, L. Hou, and G. Chen. 2013. Analysis of the characteristics of heat and mass transfer of a three-effect tubular solar still and experimental research. Desalination 330:42–48. doi:10.1016/j.desal.2013.09.017.
  • Elashmawy, M. 2017. An experimental investigation of a parabolic concentrator solar tracking system integrated with a tubular solar still. Desalination 411:1–8. doi:10.1016/j.desal.2017.02.003.
  • Elashmawy, M. 2019. Effect of surface cooling and tube thickness on the performance of a high temperature standalone tubular solar still. Applied Thermal Engineering 156:276–86. doi:10.1016/j.applthermaleng.2019.04.068.
  • Elashmawy, M. 2020a. Experimental study on water extraction from atmospheric air using tubular solar still. Journal of Cleaner Production 249:119322. doi:10.1016/j.jclepro.2019.119322.
  • Elashmawy, M. 2020b. Improving the performance of a parabolic concentrator solar tracking tubular solar still (PCST-TSS) using gravel as a sensible heat storage material. Desalination 473:1–10. doi:10.1016/j.desal.2019.114182.
  • Elashmawy, M., and M. M. Z. Ahmed. 2021. Enhancing tubular solar still productivity using composite aluminum/copper/sand sensible energy storage tubes. Solar Energy Materials and Solar Cells 221:110882. doi:10.1016/j.solmat.2020.110882.
  • Elashmawy, M., and I. Alatawi. 2020. Atmospheric water harvesting from low-humid regions of Hail City in Saudi Arabia. Natural Resources Research 29 (6):3689–700. doi:10.1007/s11053-020-09662-y.
  • Elashmawy, M., M. Alhadri, and M. M. Z. Ahmed. 2021. Enhancing tubular solar still performance using novel PCM-tubes. Desalination 500:114880. doi:10.1016/j.desal.2020.114880.
  • Elashmawy, M., and F. Alshammari. 2020. Atmospheric water harvesting from low humid regions using tubular solar still powered by a parabolic concentrator system. Journal of Cleaner Production 256:120329. doi:10.1016/j.jclepro.2020.120329.
  • El-Sebaii, A. A., and M. El-Naggar. 2017. Year round performance and cost analysis of a ?nned single basin solar still. Applied Thermal Engineering 110 (5):787–94. doi:10.1016/j.applthermaleng.2016.08.215.
  • Ettouny, H., and L. Rizzuti. 2007. Solar desalination: A challenge for sustainable fresh water in the 21th century. Solar Desalination for the 21st Century, 1–18. Springer. doi:10.1007/978-1-4020-5508-9.
  • Fukuhara, T., and A. Ahsan. 2013. Cost and production performance of a tubular solar still 1st International Conference & Exhibition on the Applications of Information Technology to Renewable Energy Processes and Systems, 9–14. Amman, Jordan, May 29–31.
  • IEA. 2020. International energy agency: Data available for 2017. cited Jun 11, http://energyatlas.iea.org
  • Jin, Z., H. Ye, H. Wang, H. Li, and J. Qian. 2017. Thermodynamic analysis of siphon flash evaporation desalination system using ocean thermal energy. Energy Conversion & Management 136:66–77. doi:10.1016/j.enconman.2017.01.002.
  • Kumar, S., and S. Sinha. 1996. Transient model and comparative study of concentrator coupled regenerative solar still in forced circulation mode. Energy Convers Mgmt 37 (5):629–36. doi:10.1016/0196-8904(95)00177-8.
  • Liu, M., and D. Wu. 2019. A new fresh water generation system under high vacuum degrees intensified by LNG cryogenic energy. Energy Procedia 158:726–32. doi:10.1016/j.egypro.2019.01.194.
  • Mareka, R., and J. Straubb. 2001. Analysis of the evaporation coefficient and condensation coefficient of water. International Journal of Heat & Mass Transfer 44:39–53. doi:10.1016/S0017-9310(00)00086-7.
  • Nafey, A. S., H. E. S. Fath, S. O. El-Helaby, and A. M. Soliman. 2004. Solar desalination using humidification dehumidification processes. Part I. A numerical investigation. Energy Conversion & Management 45:1243–61. doi:10.1016/S0196-8904(03)00151-1.
  • Nishikawa, H., T. Tsuchiya, Y. Narasaki, I. Kamiya, and H. Sato. 1998. Triple effect evacuated solar still system for getting fresh water from seawater. Applied Thermal Engineering 18 (11):1067–75. doi:10.1016/S1359-4311(98)00020-9.
  • Omara, Z. M., A. E. Kabeel, and M. M. Younes. 2014. Enhancing the stepped solar still performance using internal and external reflectors. Energy Convers Mgmt 78:876–81. doi:10.1016/j.enconman.2013.07.092.
  • Riahi, A., K. W. Yusof, M. H. Isa, B. S. M. Singh, Z. Mustaffa, A. Ahsan, M. R. U. Mustafa, N. Sapari, and N. A. M. Zahari. 2018. Potable water production using two solar stills having different cover materials and fabrication costs. Environmental Progress & Sustainable Energy 37:584–96. doi:10.1002/ep.12718.
  • Sambare, R. K., S. Joshi, and N. C. Kanojiya. 2023. Improving the freshwater production from tubular solar still using sensible heat storage materials. Thermal Science and Engineering Progress 38:101676. doi:10.1016/j.tsep.2023.101676.
  • Soliman, A. M., A. Al-Falahi, M. A. Sharaf Eldean, A. Mabrouk, H. E. S. Fath, B. Younis, A. Mabrouk, and H. E. S. Fath. 2020. A new system design of using solar dish-hydro combined with reverse osmosis for sewage water treatment: Case study Al-Marj, Libya. Desalination & Water Treatment 193:189–211. doi:10.5004/dwt.2020.25782.
  • Soliman, A. M., A. Mabrouk, M. A. Sharaf Eldean, and H. E. S. Fath. 2021. Techno-economic analysis of the impact of working fluids on the concentrated solar power combined with multi-effect distillation (Csp-med). Desalination & Water Treatment 210:1–21. doi:10.5004/dwt.2021.26566.
  • Wei, X., Y. Liu, G. Xie, W. Chen, and Z. Jiang. 2023. A visualization study of vacuum enhancement on vapor flow and yield in tubular solar still. Solar Energy 252:145–55. doi:10.1016/j.solener.2023.01.045.
  • Xie, G., W. Chen, T. Yan, J. Tang, H. Liu, and S. Cao. 2020. Three-effect tubular solar desalination system with vacuum operation under actual weather conditions. Energy Conversion & Management 205:112371. doi:10.1016/j.enconman.2019.112371.
  • Yan, T., G. Xie, W. Chen, Z. Wu, J. Xu, and Y. Liu. 2021. Experimental study on three-effect tubular solar still under vacuum and immersion cooling. Desalination 515:115211. doi:10.1016/j.desal.2021.115211.
  • Yan, T., G. Xie, L. Sun, M. Du, and H. Liu. 2019. Experimental investigation on a two-effect tubular solar still operating under vacuum conditions. Desalination 468:114057. doi:10.1016/j.desal.2019.06.023.
  • Zhang, X., W. Kan, H. Jiang, Y. Chen, T. Cheng, H. Jiang, and X. Hu. 2017. Capillary-driven low grade heat desalination. Desalination 410:10–18. doi:10.1016/j.desal.2017.01.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.