143
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A novel continuously variable-speed offshore wind turbine with magnetorheological transmission for optimal power extraction

ORCID Icon &
Pages 6869-6884 | Received 10 Mar 2022, Accepted 18 May 2023, Published online: 30 May 2023

References

  • Blaabjerg, F., K. Ma, and D. Zhou. 2012. Power electronics and reliability in renewable energy systems. 2012 IEEE International Symposium on Industrial Electronics. IEEE, 19–30.
  • Bottiglione, F., G. Mantriota, and M. Valle. 2018. Power-split hydrostatic transmissions for wind energy systems. Energies 11 (12):3369. doi:10.3390/en11123369.
  • Giallanza, A., M. Porretto, and L. Cannizzaro . 2017. Analysis of the maximization of wind turbine energy yield using a continuously variable transmission system. Renewable Energy 102:481–86. doi:10.1016/j.renene.2016.10.067.
  • Hoang, A. T., S. Nižetić, and A. I. Olcer . 2021. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 154:112322. doi:10.1016/j.enpol.2021.112322.
  • Igwemezie, V., A. Mehmanparast, and A. Kolios. 2019. Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures–A review. Renewable & Sustainable Energy Reviews 101:181–96. doi:10.1016/j.rser.2018.11.002.
  • Jelaska, D., S. Podrug, and M. Perkušić. 2015. A novel hybrid transmission for variable speed wind turbines. Renewable Energy 83:78–84. doi:10.1016/j.renene.2015.04.021.
  • Jonkman, B. J. 2009. “TurbSim user’s guide: Version 1.50,” National Renewable Energy Laboratory (NREL), CO, USA. Tech. Rep.
  • Jović, S. 2020. Prediction of aerodynamics performance of continuously variable-speed wind turbine by adaptive neuro-fuzzy methodology. Engineering with Computers 36 (2):597–602. doi:10.1007/s00366-019-00716-1.
  • Li, H., H. Diaz, and C. G. Soares. 2021. A developed failure mode and effect analysis for floating offshore wind turbine support structures. Renewable Energy 164:133–45. doi:10.1016/j.renene.2020.09.033.
  • Lin, Z., and X. Liu. 2020. Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network. Energy 201:117693. doi:10.1016/j.energy.2020.117693.
  • Liu, Y., S. Niu, and W. Fu. 2016. Design of an electrical continuously variable transmission based wind energy conversion system. IEEE Transactions on Industrial Electronics 63 (11):6745–55. doi:10.1109/TIE.2016.2590383.
  • Mirjalili, S., Z. Mirjalili S, S. Saremi, H. Faris, and I. Aljarah. 2018. Grasshopper optimization algorithm for multi-objective optimization problems. Applied Intelligence 48 (4):805–20. doi:10.1007/s10489-017-1019-8.
  • Pan, L., T. Gao, and S. Cai . 2021. Design and simulation of a novel continuously variable-speed drivetrain for wind turbine. Sādhanā. 46(3):1–9. doi:10.1007/s12046-021-01680-7.
  • Pennestrì, E., L. Mariti, and P. P. Valentini . 2012. Efficiency evaluation of gearboxes for parallel hybrid vehicles: Theory and applications. Mechanism and Machine Theory 49:157–76. doi:10.1016/j.mechmachtheory.2011.10.012.
  • Petković, D., Ž. Ćojbašič, and V. Nikolić. 2013. Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation. Renewable & Sustainable Energy Reviews 28:191–95. doi:10.1016/j.rser.2013.07.049.
  • Qiao, W., W. Zhou, and J. M. Aller . 2008. Wind speed estimation based sensorless output maximization control for a wind turbine driving a DFIG. IEEE Transactions on Power Electronics. 23(3):1156–69. doi:10.1109/TPEL.2008.921185.
  • Rex, A. H., and K. E. Johnson. 2009. Methods for controlling a wind turbine system with a continuously variable transmission in region 2. Journal of Solar Energy Engineering 131. doi:10.1115/1.3139145.
  • Tyreas, G. C., and P. G. Nikolakopoulos. 2016. Development and friction estimation of the half-toroidal continuously variable transmission: A wind generator application. Simulation Modelling Practice and Theory 66:63–80. doi:10.1016/j.simpat.2015.11.007.
  • Wan, N., and L. Yao. 2019. Efficiency modelling and analysis for a novel double-arc bevel gear nutation transmission system for pure electric vehicles. Forschung im Ingenieurwesen 83 (3):393–99. doi:10.1007/s10010-019-00359-0.
  • Wei, L., Z. Liu, and Y. Zhao . 2018. Modeling and control of a 600 kW closed hydraulic wind turbine with an energy storage system. Applied Sciences. 8(8):1314. doi:10.3390/app8081314.
  • Wenjuan, Y. 2009. Research on mechanism and design of magnetorheological fluid controlled intelligent transmission. Nanjing University of Science and Technology. (Chinese Master’s Thesis).
  • Wu, X., Z. Ma, and X. Rui . 2016. Speed control for the continuously variable transmission in wind turbines under subsynchronous resonance. Iranian Journal of Science and Technology Transactions of Mechanical Engineering. 40(2):151–54. doi:10.1007/s40997-016-0007-7.
  • Xu, X., Z. Wei, and Q. Ji . 2019. Global renewable energy development: Influencing factors, trend predictions and countermeasures. Resources Policy 63:101470. doi:10.1016/j.resourpol.2019.101470.
  • Yin, X. 2018. An up to date review of continuously variable speed wind turbines with mechatronic variable transmissions. International Journal of Energy Research 42 (4):1442–54. doi:10.1002/er.3908.
  • Yin, X. X., Y. G. Lin, and W. Li. 2015. Operating modes and control strategy for megawatt-scale hydro-viscous transmission-based continuously variable speed wind turbines. IEEE Transactions on Sustainable Energy 6 (4):1553–64. doi:10.1109/TSTE.2015.2455872.
  • Yin, X., Y. Lin, and W. Li . 2014. Output power control for hydro-viscous transmission based continuously variable speed wind turbine. Renewable Energy 72:395–405. doi:10.1016/j.renene.2014.07.010.
  • Yin, X., Y. Lin, and W. Li . 2016. Hydro-viscous transmission based maximum power extraction control for continuously variable speed wind turbine with enhanced efficiency. Renewable Energy 87:646–55. doi:10.1016/j.renene.2015.10.032.
  • Yin, X., W. Zhang, and X. Zhao. 2019. Current status and future prospects of continuously variable speed wind turbines: A systematic review. Mechanical Systems and Signal Processing 120:326–40. doi:10.1016/j.ymssp.2018.05.063.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.