72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Catalytic transesterification of kapok seed oil by dual metal oxide (Na2O-K2O; MgO-CaO) impregnated active-natural mordenite under ultrasonic irradiation

ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon & show all
Pages 6885-6900 | Received 06 Apr 2023, Accepted 18 May 2023, Published online: 30 May 2023

References

  • AbuKhadra, M. R., M. G. Basyouny, A. M. El-Sherbeeny, M. A. El-Meligy, and A. E. E. Abd Elgawad. 2020. Transesterification of commercial waste cooking oil into biodiesel over innovative alkali trapped zeolite nanocomposite as green and environmental catalysts. Sustainable Chemistry and Pharmacy 17 (June):100289. doi:10.1016/j.scp.2020.100289.
  • Abukhadra, M. R., S. I. Othman, A. A. Allam, and H. Elfayoumi. 2021. Insight into the catalytic properties zeolitized kaolinite/diatomite geopolymer as an environmental catalyst for the sustainable conversion of spent cooking oil into biodiesel; optimization and kinetics. Sustainable Chemistry and Pharmacy 22 (April):100473. doi:https://doi.org/10.1016/j.scp.2021.100473.
  • Agoes, S., A. S. Suryandari, S. Soe’eib, and N. P. Asri. 2019. Biodiesel production from kapok seed oil (Ceiba pentandra) using MgO/CaO Bimetallic oxide catalyst. Asian Journal Science Technology 10 (1):9290–94. doi:10.4108/eai.2-10-2018.2295462.
  • Anwaristiawan, D., Harjito, and N. Widiarti. 2018. Modifikasi Katalis BaO/Zeolit Y pada Reaksi Transesterifikasi Minyak Biji Jarak (Jatropha Curcas L.) menjadi Biodiesel. Indones Journal Chemical Science 7 (3):292–98. doi:10.15294/ijcs.v7i3.22454.
  • Bates, J. S., and R. Gounder. 2021. Kinetic effects of molecular clustering and solvation by extended networks in zeolite acid catalysis. Chemical Science Internet. 12(13):4699–708. doi:https://doi.org/10.1039/D1SC00151E.
  • Belkhanchi, H., M. Rouan, M. Hammi, Y. Ziat, and M. Chigr. 2021. Synthesis of biodiesel by transesterification of Used Frying Oils (UFO) through basic homogeneous catalysts (NaOH and KOH). Biointerface Research and Applied Chemistry 11 (5):12858–68. doi:10.33263/BRIAC115.1285812868.
  • Chozhavendhan, S., M. Vijay Pradhap Singh, B. Fransila, R. Praveen Kumar, and G. Karthiga Devi. 2020. A review on influencing parameters of biodiesel production and purification processes. Current Research in Green and Sustainable Chemistry Internet. 1–2:1–6. doi:10.1016/j.crgsc.2020.04.002.
  • El Bojaddayni, I., M. Emin Küçük, Y. El Ouardi, I. Jilal, S. El Barkany, K. Moradi, E. Repo, K. Laatikainen, and A. Ouammou. 2023. A review on synthesis of zeolites from natural clay resources and waste ash: Recent approaches and progress. Minerals Engineering Internet. 198:108086. doi:https://doi.org/10.1016/j.mineng.2023.108086.
  • Encinar, J. M., J. F. González, G. Martínez, and S. Nogales-Delgado. 2022. Transesterification of soybean oil through different homogeneous catalysts: kinetic study. Catalysts 12 (2):146. doi:10.3390/catal12020146.
  • Fawaz, E. G., D. A. Salam, and T. J. Daou. 2020. Esterification of linoleic acid using HZSM-5 zeolites with different Si/Al ratios. Microporous and Mesoporous Materials [Internet]. 294:294. doi:10.1016/j.micromeso.2019.109855.
  • Fereidooni, L., A. Abbaspourrad, and M. Enayati. 2021. Electrolytic transesterification of waste frying oil using Na+/zeolite–chitosan biocomposite for biodiesel production. Waste Management 127:48–62. doi:https://doi.org/10.1016/j.wasman.2021.04.020.
  • Go, Y. W., and S. H. Yeom. 2019. Fabrication of a solid catalyst using coal fly ash and its utilization for producing biodiesel. Environmental Engineering Research Internet. 24(2):324–30. doi:10.4491/eer.2018.029.
  • Grifoni, E., G. Piccini, J. A. Lercher, V. -A. Glezakou, R. Rousseau, and M. Parrinello. 2021. Confinement effects and acid strength in zeolites. Nature Communications Internet. 12(1):2630. doi:https://doi.org/10.1038/s41467-021-22936-0.
  • Hartono, R., A. Wijanarko, and H. Hermansyah. 2018. Synthesis of biodiesel using local natural zeolite as heterogeneous anion exchange catalyst. IOP Conference Series: Materials Science & Engineering 345 (1):012002. doi:https://doi.org/10.1088/1757-899X/345/1/012002.
  • Hegyesi, N., R. T. Vad, and B. Pukánszky. 2017. Determination of the specific surface area of layered silicates by methylene blue adsorption: The role of structure, pH and layer charge. Applied Clay Science Internet. 146:50–55. doi:https://doi.org/10.1016/j.clay.2017.05.007.
  • Helwani, Z., M. Ramli, E. Saputra, Bahruddin, D. Yolanda, W. Fatra, G. M. Idroes, Muslem, T. M. I. Mahlia, and R. Idroes. 2020. Impregnation of CaO from eggshell waste with magnetite as a solid catalyst (Fe3o4/CaO) for transesterification of palm oil off-grade. Catalysts [Internet]. 10(2):1–13. doi:10.3390/catal10020164.
  • Król, M. 2020. Natural vs. Synthetic Zeolites Crystals Internet. 10 (7):622. doi:10.3390/cryst10070622.
  • Kusuma, R. I., J. P. Hadinoto, A. Ayucitra, F. E. Soetaredjo, and S. Ismadji. 2013. Natural zeolite from Pacitan Indonesia, as catalyst support for transesterification of palm oil. Applied Clay Science 74:121–26. doi:https://doi.org/10.1016/j.clay.2012.04.021.
  • Malia, A., P. Suarya, I. A. R. A. Asih, and I. M. W. A. Putra. 2016. Pengaruh Rasio Molar Minyak Jelantah dengan Metanol dan Suhu Reaksi dalam Reaksi Transesterifikasi Terkatalis CaO/Zeolit Alam terhadap Yield Biodiesel. Jurnal Kimia Internet. 10(1):49–57. doi:10.24843/JCHEM.2016.v10.i01.p07.
  • Mallette, A. J., S. Seo, and J. D. Rimer. 2022. Synthesis strategies and design principles for nanosized and hierarchical zeolites. Nature Synthesis Internet. 1(7):521–34. doi:https://doi.org/10.1038/s44160-022-00091-8.
  • Maroa, S., and F. Inambao. 2021. A review of sustainable biodiesel production using biomass derived heterogeneous catalysts. Engineering in Life Sciences Internet. 21(12):790–824. doi:https://doi.org/10.1002/elsc.202100025.
  • Meza-Ramírez, D. B., C. Hernández-Benítez, A. Contreras-Arias, L. A. Godínez, and F. J. Rodríguez-Valadez. 2021. Optimization of an ultrasonic reactor on a semi-pilot scale for biodiesel production. Fuel 288 (March 2020):119645. doi:https://doi.org/10.1016/j.fuel.2020.119645.
  • Otieno, S. O., C. O. Kowenje, A. Okoyo, D. M. Onyango, K. O. Amisi, and K. M. Nzioka. 2018. Optimizing production of biodiesel catalysed by chemically tuned natural zeolites. Materials Today: Proceedings 5 (4):10561–69. doi:https://doi.org/10.1016/j.matpr.2017.12.388.
  • Potts, D. S., D. T. Bregante, J. S. Adams, C. Torres, and D. W. Flaherty. 2021. Influence of solvent structure and hydrogen bonding on catalysis at solid–liquid interfaces. Chemical Society Reviews Internet. 50(22):12308–37. doi:https://doi.org/10.1039/D1CS00539A.
  • Putra, I. M. W. A. 2017. Production of biodiesel from waste cooking oil by transesterification reaction using CaO/natural zeolite catalysts.Cakra Kim (Indonesian E-journal Applied Chemical Internet. 5(2):51–57. https://ojs.unud.ac.id/index.php/cakra/article/view/35984.
  • Putri, E. M. M., M. Rachimoellah, N. Santoso, and F. Pradana. 2012. Biodiesel production from kapok seed oil (ceiba pentandra) through the transesterification process by using CaO as catalyst. Glob Journals Res Eng Internet. 12 (C2):7–12. https://engineeringresearch.org/index.php/GJRE/article/view/314.
  • Qu, S., C. Chen, M. Guo, J. Lu, W. Yi, J. Ding, and Z. Miao. 2020. Synthesis of MgO/ZSM-5 catalyst and optimization of process parameters for clean production of biodiesel from Spirulina platensis. Journal of Cleaner Production Internet. 276:123382. doi:https://doi.org/10.1016/j.jclepro.2020.123382.
  • Saba, T., J. Estephane, B. El Khoury, M. El Khoury, M. Khazma, H. El Zakhem, and S. Aouad. 2016. Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts. Renewable Energy Internet. 90:301–06. doi:https://doi.org/10.1016/j.renene.2016.01.009.
  • Santoso, A., A. Sholikhah, Sumari, M. R. Asrori, A. R. Wijaya, R. Retnosari, and I. B. Rachman. 2022. Effect of active zeolite in the pyrolysis of polypropylene and low density polyethylene types of plastic waste. Journal of Renewable Materials 10 (11):2781–89. doi:10.32604/jrm.2022.021401.
  • Santoso, A., Sumari, and M. R. Asrori. 2022. Methyl ester type produced by catalytic transesterification: From various oil feedstock to biodiesel products. Energy Engineering 119 (6):2255–76. doi:10.32604/ee.2022.021596.
  • Santoso, A., Sumari, A. Salim, and S. Marfu’ah. 2018. Synthesis of methyl ester from chicken oil and methanol using heterogeneous catalyst of CaO-MgO as well as characterization its potential as a biodiesel fuel. Journal of Physics Conference Series Internet. 1093:12035. doi:10.1088/1742-6596/1093/1/012035.
  • Santoso, A., Sumari, U. U. Zakiyya, and A. Tiara Nur. 2019. Methyl ester synthesis of crude palm oil off grade using the K2O/Al2O3 catalyst and its potential as biodiesel. IOP Conference Series: Materials Science & Engineering Internet. 515(1):012042. doi:10.1088/1757-899X/515/1/012042.
  • Santoso, A., A. R. Wijaya, A. Rahmadani, D. Sukarianingsih, D. E. K. Putri, and S. Sumari. 2021. Effect of CaO_K2O heterogeneous catalyst concentration and reaction temperature on trans-esterification of waste cooking oil with ultrasonic wave. Frontiers in Physics Internet. 2330 (1):70009. doi:10.1063/5.0043404.
  • Sarifudin, K. 2021. Studi Pengaruh Rasio Logam Prekursor Mo/Ni terhadap Karakter Keasaman dan Morfologi Katalis K-Ni-Mo/ZAA. Haumeni Journal Education Internet. 1 (2):160–70. https://ejurnal.undana.ac.id/index.php/haumeni/article/view/5906/3234.
  • Sibarani, J., M. Zulfihardini, and I. W. Suarsa. 2020. Sintesis Dan Karakteristik Katalis CaO-Bentonit untuk Reaksi Transesterifikasi Minyak Jelantah Menjadi Biodiesel. Cakra Kim (Indonesian E-Journal Applied Chemical Internet. 8 (1):59–65. https://ojs.unud.ac.id/index.php/cakra/article/view/62811.
  • Sievers, C., Y. Noda, L. Qi, E. M. Albuquerque, R. M. Rioux, and S. L. Scott. 2016. Phenomena affecting catalytic reactions at solid–liquid interfaces. ACS Catalysis Internet. 6(12):8286–307. doi:https://doi.org/10.1021/acscatal.6b02532.
  • Suhendi, E., T. Kurniawan, A. Y. Pradana, and V. Z. Giffari. 2021. The effect of time on the activation of bayah natural zeolite for application of palm oil shell pyrolysis. Bulletin of Chemical Reaction Engineering & Catalysis Internet. 16(3):588–600. doi:https://doi.org/10.9767/bcrec.16.3.10313.588-600.
  • Sumari, S., F. Fajaroh, Yahmin, N. Sholihah, A. Santoso, A. Budianto. 2019. Effect of temperature synthesis on structural behaviours of NaY zeolite using local sand as a silica source. IOP Conference Series: Materials Science & Engineering Internet. 515:12036. doi:https://doi.org/10.1088/1757-899x/515/1/012036.
  • Sumari, M. M., A. Santoso, and M. R. Asrori. 2022. Sono-transesterification of kapok seed oil with CaO: BaO-(x: Y)/Active natural zeolite catalyst. Journal of Renewable Materials 10 (12):3659–70. doi:10.32604/jrm.2022.022995.
  • Sumari, F. F., A. Santoso, and R. K. Wardani. 2018. Performance of activated natural zeolite/Cu as a catalyst on degradation of glycerol into ethanol assisted by ultrasonic. Journal of Physics Conference Series Internet. 1093:12036. doi:10.1088/1742-6596/1093/1/012036.
  • Supamathanon, N., and S. Khabuanchalad. 2019. Development of K-mordenite catalyst for biodiesel production from soybean oil. Materials Today: Proceedings Internet. 17:1412–22. doi:https://doi.org/10.1016/j.matpr.2019.06.162.
  • Sutrisno, B., M. Dysca Sanada, W. Kurniawan, A. Hidayat, and H. Hinode. 2020. Synthesis of biodiesel from kapok seed oil using CaO/Dolomite catalyst and its comparison with homogeneous catalyst. IOP Conference Series: Materials Science & Engineering Internet. 778(1):12110. doi:https://doi.org/10.1088/1757-899X/778/1/012110.
  • Vityuk, A., H. A. Aleksandrov, G. N. Vayssilov, S. Ma, O. S. Alexeev, and M. D. Amiridis. 2014. Effect of Si/Al Ratio on the nature and reactivity of HY zeolite-supported rhodium dicarbonyl complexes. The Journal of Physical Chemistry C 118 (46):26772–88. doi:https://doi.org/10.1021/jp507526g.
  • Wang, H., L. Wang, and F. S. Xiao. 2020. Metal@zeolite hybrid materials for catalysis. ACS Central Science 6 (10):1685–97. doi:10.1021/acscentsci.0c01130.
  • Wu, W., Q. Fan, B. Yi, B. Liu, and R. Jiang. 2020. Catalytic characteristics of a Ni–MgO/HZSM-5 catalyst for steam reforming of toluene. RSC Advances 10 (35):20872–81. doi:https://doi.org/10.1039/D0RA02403A.
  • Wu, H., J. Zhang, Q. Wei, J. Zheng, and J. Zhang. 2013. Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts. Fuel Processing Technology Internet. 109:13–18. doi:https://doi.org/10.1016/j.fuproc.2012.09.032.
  • Xie, W., X. Huang, and H. Li. 2007. Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresource Technology Internet. 98(4):936–39. doi:https://doi.org/10.1016/j.biortech.2006.04.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.