102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal performance optimization of rectangular cavity receiver for cross linear concentrating solar power system

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 6932-6948 | Received 05 Jan 2023, Accepted 18 May 2023, Published online: 30 May 2023

References

  • Aiba, T., Kanatani K, Tamaura Y, Kikura H. 2016. Feasibility study on 20 MWe cross linear concentrated solar power plant. Journal of Engineering and Applied Science 11:4074–78.
  • Aiba, T., Y. Tamaura, N. Tsuzuki, and H. Kikura. 2015. Improvement of image processing control accuracy for cross linear heliostat. Energy Procedia 69:1859–67. doi:10.1016/j.egypro.2015.03.164.
  • Basem, A., Moawed, M., Abbood, M. H., El-Maghlany, W.M . 2022. The energy and exergy analysis of a combined parabolic solar dish – steam power plant. Renewable Energy Focus 41:55–68. doi:10.1016/j.ref.2022.01.003.
  • Bellos, E. 2019. Progress in the design and the applications of linear Fresnel reflectors – a critical review. Thermal Science and Engineering Progress 10:112–37. doi:10.1016/j.tsep.2019.01.014.
  • Bellos, E., C. Tzivanidis, and A. Papadopoulos. 2018. Optical and thermal analysis of a linear Fresnel reflector operating with thermal oil, molten salt and liquid sodium. Applied Thermal Engineering 133:70–80. doi:10.1016/j.applthermaleng.2018.01.038.
  • Diego, P.-I. 2019. Optimized design of a Linear Fresnel reflector for solar process heat applications. Renewable Energy 131:1089–106. doi:10.1016/j.renene.2018.08.018.
  • Dincer, I., and M. A. Rosen. 2013. Chapter 2 - exergy and energy analyses. In Exergy, 21–30. 2nd Edition). Elsevier. doi:10.1016/B978-0-08-097089-9.00002-4.
  • Dittus, F. W., and L. M. K. Boelter. 1930. Heat Transfer in Automobile Radiators of the Tubular Type, Vol. 2, 443–61. Berkeley: University of California Press.
  • Duffie, J. A., and W. A. Beckman. 2013. Concentrating collectors. In In solar engineering of thermal processes. John Wiley & Sons, Ltd. doi:10.1002/9781118671603.
  • Duffie, J. A., W. A. Beckman, and J. McGowan. 1985. Solar engineering of thermal processes. American Journal of Physics 53 (4):382–382. doi:10.1119/1.14178.
  • Freddy, O., and J. Daniela. 2018. Thermal performance model and parametric studies of a trapezoidal Fresnel solar receiver. AIP Conference Proceedings 8 November 2018 2033 (1):050003. doi:10.1063/1.5067083.
  • Government of India. 2020. Solar radiation energy over India. Indian Meteorological Department and Ministry of New and Renewable Energy.
  • Jan, K., and M. Jaideep (2020) Solar Heat for Industry in India, Solar Payback. Available at: https://www.solar-payback.com/solar-heat-for-industry-in-india/.
  • Kalogirou, S. A. 2009. Chapter four - performance of solar collectors. In Solar energy engineering, 219–50. Academic Press. doi:10.1016/B978-0-12-374501-9.00004-2.
  • Kikura, H., Kanatani, K., Hamdani, A., Tamaura, Y . (2017) ‘Fundamental study of cross linear concentration system and solar power system in Tokyo Tech’, in International Conference Recent Trends on Energy Storage & Hydrogen Energy. Bhopal, India.
  • Kurkute, N., and A. Priyam. 2022. A thorough review of the existing concentrated solar power technologies and various performance enhancing techniques. Journal of Thermal Analysis and Calorimetry 147 (24):14713–37. doi:10.1007/s10973-022-11634-8.
  • Mishra, P., M. Pandey, Y. Tamaura, and S. Tiwari. 2021. Numerical analysis of cavity receiver with parallel tubes for cross-linear concentrated solar system. Energy 220:119609. doi:10.1016/j.egypro.2014.03.027.
  • Mokhtar, G., B. Boussad, and S. Noureddine. 2016. A linear Fresnel reflector as a solar system for heating water: Theoretical and experimental study. Case Studies in Thermal Engineering 8:176–86. doi:10.1016/j.csite.2016.06.006.
  • Montes, M. J., R. Abbas, R. Barbero, and A. Rovira. 2022. A new design of multi-tube receiver for Fresnel technology to increase the thermal performance. Applied Thermal Engineering 204:117970. doi:10.1016/j.applthermaleng.2021.117970.
  • OMAR, M., and A. RABGHI. 1992. THE MONTHLY-AVERAGED and YEARLY-AVERAGED COSINE EFFECT FACTOR of a HELIOSTAT FIELD. International Journal of Solar Energy 13 (1):43–61. doi:10.1080/01425919208909773.
  • Panna, L. S., R. M. Sarviya, and B. J.L. 2010. Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers. Applied Energy 87 (2):541–50. doi:10.1016/j.apenergy.2009.08.019.
  • Patel, A., A. Soni, P. Baredar, and R. Malviya. 2022. Analysis of temperature distribution over pipe surfaces of air-based cavity linear receiver for cross-linear concentration solar power system. Environmental Science and Pollution Research 30 (11):28621–39. doi:10.1007/s11356-022-24036-y.
  • Pavlovic, S., A. M. Daabo, E. Bellos, V. Stefanovic, S. Mahmoud, and R. K. Al-Dadah. 2017. Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver. Journal of Cleaner Production 150:75–92. doi:10.1016/j.jclepro.2017.02.201.
  • Petela, R. 2003. Exergy of undiluted thermal radiation. Solar Energy 74 (6):469–88. doi:10.1016/S0038-092X(03)00226-3.
  • Reddy, K. S., and N. Sendhil Kumar. 2009. Convection and surface radiation heat losses from modified cavity receiver of solar parabolic dish collector with two-stage concentration. Heat and Mass Transfer 45 (3):363–73. doi:10.1007/s00231-008-0440-2.
  • Renata, R., Kanatani, K., Takahashi, H., Tamaura, Y., Kikura, H . 2018. Optimization of solar cavity receiver for cross linear concentrated solar power system – a numerical study, 7953–60. doi:10.1615/IHTC16.nee.024318.
  • Singh, R., and M. Pandey. 2016. Analytical analysis for receiver and its processing for a 30 Kw CL-CSP System at RGPV Bhopal. IJSRD - International Journal for Scientific Research & Developmen 4 (3):1859–64.
  • Soni, A., Patel A., Pandey M., Gour A. 2017. Overview of Different Solar Receiver on Basis of its Configuration and Heat Transfer Fluid. International Journal of Creative Research Thoughts (IJCRT). 5 (7):522–28.
  • Tamaura, Y., S. Shigeta, Q.-L. Meng, T. Aiba, and H. Kikura. 2014. Cross linear solar concentration system for CSP and CPV. Energy Procedia 49:249–56. doi:10.1016/j.egypro.2014.03.027.
  • Tarun, A. K., S. Chandan, and C. K. Tara. 2021. Cost reduction potential in parabolic trough collector based CSP plants. Renewable & Sustainable Energy Reviews 138:110658. doi:10.1016/j.rser.2020.110658.
  • Tasmin, N., S. H. Farjana, M. R. Hossain, S. Golder, and M. A. P. Mahmud. 2022. Integration of solar process heat in industries: A review. Clean Technologies 4 (1):97–131. doi:https://doi.org/10.3390/cleantechnol4010008.
  • United Nations. 2022. The sustainable development goals report 2022. Available at: https://unstats.un.org/sdgs/report/2022/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.