307
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Separation and recovery of cathode materials from spent Li-ion batteries using flotation

ORCID Icon, , , , &
Pages 7088-7104 | Received 06 Jan 2023, Accepted 23 May 2023, Published online: 31 May 2023

References

  • Arshad, F., L. Li, K. Amin, E. Fan, N. Manurkar, A. Ahmad, J. Yang, F. Wu, and R. Chen. 2020. A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries. ACS Sustainable Chemistry & Engineering 8 (36):13527–54. doi:10.1021/acssuschemeng.0c04940.
  • Bertuol, D. A., C. Toniasso, B. M. Jiménez, L. Meili, G. L. Dotto, E. H. Tanabe, and M. L. Aguiar. 2015. Application of spouted bed elutriation in the recycling of lithium ion batteries. Journal of Power Sources 275:627–32. doi:10.1016/j.jpowsour.2014.11.036.
  • Chen, X., D. Kang, L. Cao, J. Li, T. Zhou, and H. Ma. 2019. Separation and recovery of valuable metals from spent lithium ion batteries: Simultaneous recovery of Li and Co in a single step. Separation and Purification Technology 210:690–97. doi:10.1016/j.seppur.2018.08.072.
  • Chen, X. P., H. R. Ma, C. B. Luo, and T. Zhou. 2017. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. Journal of Hazardous Materials 326 (MAR.15):77–86. doi:10.1016/j.jhazmat.2016.12.021.
  • Gavin, H., S. Roberto, K. Emma, D. Laura, S. Peter, S. Rustam, W. Allan, C. Paul, H. Oliver, L. Simon, et al. 2019. Recycling lithium-ion batteries from electric vehicles. Nature 575 (7781):75–86. doi:10.1038/s41586-019-1682-5.
  • He, K., Z. Y. Zhang, L. Alai, and F. S. Zhang. 2019. A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries. Journal of Hazardous Materials 375:43–51. doi:10.1016/j.jhazmat.2019.03.120.
  • He, Y., T. Zhang, F. Wang, G. Zhang, W. Zhang, and J. Wang. 2017. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation. Journal of Cleaner Production 143:319–25. doi:10.1016/j.jclepro.2016.12.106.
  • Jan, D., H. Christian, F. Linus, S. Gerrit, L. Thomas, F. Anne-Sophie, and K. Arno. 2017. Ecological recycling of lithium-ion batteries from electric vehicles with focus on mechanical processes. Journal of the Electrochemical Society 164 (1):A6184–A91. doi:10.1149/2.0271701jes.
  • Kim, Y. H., M. Matsuda, A. Shibayama, and T. Fujita. 2005. Recovery of LiCoO2 from wasted lithium ion batteries by using mineral processing technology. Resources Processing 51 (1):3–7. doi:10.4144/rpsj.51.3.
  • Liu, Y., L. Duy, S. Li, P. Xiongbin, G. Akhil, L. P. L. My, A. Saeed, and S. Jayne. 2018. Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles. Resources Conservation & Recycling 136:198–208. doi:10.1016/j.resconrec.2018.04.025.
  • Liu, J. S., H. F. Wang, T. T. Hu, X. J. Bai, Y. Q. He, W. Xie, J. Hao, and Y. He. 2020. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by cryogenic grinding and froth flotation. Minerals Engineering 148:106223. doi:10.1016/j.mineng.2020.106223.
  • Liu, W., X. H. Zhong, J. W. Han, W. Q. Qin, T. Liu, C. X. Zhao, and Z. Y. Chang. 2019. Kinetic study and pyrolysis behaviors of spent LiFePO4 batteries. ACS Sustainable Chemistry & Engineering 7 (1):1289–99. doi:10.1021/acssuschemeng.8b04939.
  • Li, J., G. X. Wang, and Z. M. Xu. 2016. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. Journal of Hazardous Materials 302:97–104. doi:10.1016/j.jhazmat.2015.09.050.
  • Mai, K. T., T. F. R. Marco, K. Keiko, B. Ganguli, and M. A. Pulickel. 2019. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nature Energy 4:339–45. doi:10.1038/s41560-019-0368-4.
  • Sun, Q. F., X. L. Li, H. Z. Zhang, D. W. Song, X. X. Shi, J. S. Song, C. L. Li, and L. Q. Zhang. 2020. Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route. Journal of Alloys and Compounds 818:8. doi:10.1016/j.jallcom.2019.153292.
  • Traore, N., and S. Kelebek. 2023. Characteristics of spent lithium ion batteries and their recycling potential using flotation separation: A review. Mineral Processing & Extractive Metallurgy Review 44 (3):231–59. doi:10.1080/08827508.2022.2040497.
  • Verdugo, L., L. Zhang, B. Etschmann, W. Bruckard, J. Menacho, and A. Hoadley. 2023. Effect of lithium ion on the separation of electrode materials in spent lithium ion batteries using froth flotation. Separation and Purification Technology 123241. doi:10.1016/j.seppur.2023.123241.
  • Yu, R. 2017. Economic Watch: China mulls timetable to ban fossil fuel vehicles. http://www.xinhuanet.com/english/2017-09/11/c_136601024.htm.
  • Yu, Y. J., B. Chen, K. Huang, X. Wang, and D. Wang. 2014. Environmental impact assessment and end-of-life treatment policy analysis for li-ion batteries and Ni-MH batteries. International Journal of Environmental Research and Public Health 11 (3):3185–98. doi:10.3390/ijerph110303185.
  • Yu, J., Y. He, Z. Ge, H. Li, W. Xie, and S. Wang. 2018. A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: Grinding flotation. Minerals Engineering 190:45–52. doi:10.1016/j.seppur.2017.08.049.
  • Yu, J., Y. He, H. Li, W. Xie, and T. Zhang. 2017. Effect of the secondary product of semi-solid phase Fenton on the flotability of electrode material from spent lithium-ion battery. Powder Technology 315:139–46. doi:10.1016/j.powtec.2017.03.050.
  • Yu, J. D., Y. Q. He, L. L. Qu, J. S. Yang, W. N. Xie, and X. N. Zhu. 2020. Exploring the critical role of grinding modification on the flotation recovery of electrode materials from spent lithium ion batteries. Journal of Cleaner Production 274:123066. doi:10.1016/j.jclepro.2020.123066.
  • Zhang, G., Y. He, Y. Feng, H. Wang, and X. Zhu. 2018. Pyrolysis-ultrasonic-assisted flotation technology for recovering graphite and LiCoO2 from spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 6 (8):10896–904. doi:10.1021/acssuschemeng.8b02186.
  • Zhang, T., Y. Q. He, L. H. Ge, R. S. Fu, X. Zhang, and Y. J. Huang. 2013. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries. Journal of Power Sources 240:766–71. doi:10.1016/j.jpowsour.2013.05.009.
  • Zhang, G. W., Y. Q. He, H. F. Wang, Y. Feng, W. N. Xie, and X. N. Zhu. 2020. Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 8 (5):2205–14. doi:10.1021/acssuschemeng.9b05896.
  • Zhang, T., Y. He, F. Wang, H. Li, C. Duan, and C. Wu. 2014. Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy. Separation and Purification Technology 138:21–27. doi:10.1016/j.seppur.2014.09.033.
  • Zhan, R., Z. Oldenburg, and L. Pan. 2018. Recovery of active cathode materials from lithium-ion batteries using froth flotation. Sustainable Materials and Technologies 17:e00062. doi:10.1016/j.susmat.2018.e00062.
  • Zhao, C. X., and X. H. Zhong. 2020. RETRACTED: Reverse flotation process for the recovery of pyrolytic LiFePO4. Colloids and Surfaces: A, Physicochemical and Engineering Aspects 596:124741. doi:10.1016/j.colsurfa.2020.124741.
  • Zhou, L. F., D. R. Yang, T. Du, H. Gong, and W. B. Luo. 2020. The current process for the recycling of spent lithium ion batteries. Front Chem 8:7. doi:10.3389/fchem.2020.578044.
  • Zhuang, L. Q., C. H. Sun, T. Zhou, H. Li, and A. Q. Dai. 2019. Recovery of valuable metals from LiNi0.5Co0.2Mri0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant. Waste Management 85:175–85. doi:10.1016/j.wasman.2018.12.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.