84
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pad type impact on the economical direct- evaporative air cooler efficiency

, , & ORCID Icon
Pages 6949-6963 | Received 30 Dec 2022, Accepted 06 May 2023, Published online: 30 May 2023

References

  • Ali Bahobail, M. 2013. Evaporative cooler self salt clean. Journal of King Saud University - Architecture & Planning 25 (1):1–12.
  • Alwan, A. D. H., I. W. Maid, and A. H. Soheel. 2013. Numerical and experimental study of counter flow cooling tower performance with difference packs porosity and configuration. Al-Rafidain Engineering 21 (6):101–15. doi:10.33899/rengj.2013.82397.
  • Amer, O., R. Boukhanouf, and H. G. Ibrahim. 2015. A review of evaporative cooling technologies. International Journal of Environmental Science and Development 6 (2):111–17. doi:10.7763/IJESD.2015.V6.571.
  • Bishoyi, D., and K. Sudhakar. 2017. Experimental performance of a direct evaporative cooler in composite climate of India. Energy & Buildings 153:190–200. doi:10.1016/j.enbuild.2017.08.014.
  • Cengel, Y., and J. G. Afshin. 2015. Heat and mass transfer: fundamentals and applications. 5th ed. New Yourk, America: McGraw-Hill Higher Education.
  • Chen, X., Y. Su, D. Aydin, X. Zhang, Y. Ding, D. Reay, R. Law, and S. Riffat. 2017. Experimental investigations of polymer hollow fibre integrated evaporative cooling system with the fibre bundles in a spindle shape. Energy & Buildings 154:166–74. doi:10.1016/j.enbuild.2017.08.068.
  • Das, R. S., and S. Jain. 2017. Experimental investigations on a solar assisted liquid desiccant cooling system with indirect contact dehumidifier. Solar Energy 153:289–300. doi:10.1016/j.solener.2017.05.071.
  • Hitchin, P. 2014. Greening the desert [sustainability desert farming]. Engineering & Technology 9 (6):82–85. doi:10.1049/et.2014.0616.
  • Ibrahim, T. K., A. T. Al-Sammarraie, M. S. Al-Jethelah, W. H. Al-Doori, M. R. Salimpour, and H. Tao. 2020. The impact of square shape perforations on the enhanced heat transfer from fins: Experimental and numerical study. International Journal of Thermal Sciences 149:106144. doi:10.1016/j.ijthermalsci.2019.106144.
  • Ketwong, W., T. Deethayat, and T. Kiatsiriroat. 2021. Performance enhancement of air conditioner in hot climate by condenser cooling with cool air generated by direct evaporative cooling. Case Studies in Thermal Engineering 26:101127. doi:10.1016/j.csite.2021.101127.
  • Laknizi, A., A. Ben Abdellah, M. Faqir, E. Essadiqi, and S. Dhimdi. 2021. Performance characterization of a direct evaporative cooling pad based on pottery material. International Journal of Sustainable Engineering 14 (1):46–56. doi:10.1080/19397038.2019.1677800.
  • Laknizi, A., A. Ben Abdellah, M. Mahdaoui, and K. Anoune. 2021. Application of Taguchi and ANOVA methods in the optimisation of a direct evaporative cooling pad. International Journal of Sustainable Engineering 14 (5):1218–28. doi:10.1080/19397038.2020.1866707.
  • Liu, Y., Y. G. Akhlaghi, X. Zhao, and J. Li. 2019. Experimental and numerical investigation of a high-efficiency dew-point evaporative cooler. Energy & Buildings 197:120–30. doi:10.1016/j.enbuild.2019.05.038.
  • Martínez, P., J. Ruiz, P. J. Martínez, A. S. Kaiser, and M. Lucas. 2018. Experimental study of the energy and exergy performance of a plastic mesh evaporative pad used in air conditioning applications. Applied Thermal Engineering 138:675–85. doi:10.1016/j.applthermaleng.2018.04.065.
  • Mohamed, A. A., A. A. Wnas, and B. J. Nabhan. 2016. Experimental study of a multi-stage evaporative cooler. University of Thi-Qar Journal of Engineering Science 7 (1):1–8.
  • Nada, S. A., H. F. Elattar, M. A. Mahmoud, and A. Fouda. 2020. Performance enhancement and heat and mass transfer characteristics of direct evaporative building free cooling using corrugated cellulose papers. Energy 211:118678. doi:10.1016/j.energy.2020.118678.
  • Nada, S. A., A. Fouda, M. A. Mahmoud, and H. F. Elattar. 2019. Experimental investigation of energy and exergy performance of a direct evaporative cooler using a new pad type. Energy & Buildings 203:109449. doi:10.1016/j.enbuild.2019.109449.
  • Prozuments, A., A. Brahmanis, A. Mucenieks, V. Jacnevs, and D. Zajecs. 2022. Preliminary study of various cross-sectional metal sheet shapes in adiabatic evaporative cooling pads. Energies 15 (11):3875. doi:10.3390/en15113875.
  • Shahzad, M. W., M. Burhan, D. Ybyraiymkul, S. J. Oh, and K. C. Ng. 2019. An improved indirect evaporative cooler experimental investigation. Applied Energy 256:113934. doi:10.1016/j.apenergy.2019.113934.
  • Sohani, A., and H. Sayyaadi. 2017. Design and retrofit optimization of the cellulose evaporative cooling pad systems at diverse climatic conditions. Applied Thermal Engineering 123:1396–418. doi:10.1016/j.applthermaleng.2017.05.120.
  • Standard. 2009. ASHRAE handbook: fundamentals - American society of heating, refrigerating and air-conditioning engineers - google books. Atlanta, GA, USA: Ashrae.
  • Xu, P., T. Xu, and P. Shen. 2012. Advancing evaporative rooftop packaged air conditioning: A new design and performance model development. Applied Thermal Engineering 40 (8):8–17. doi:10.1016/j.applthermaleng.2012.01.045.
  • Yan, M., S. He, N. Li, X. Huang, M. Gao, M. Xu, J. Miao, Y. Lu, K. Hooman, J. Che, et al. 2021. Experimental investigation on a novel arrangement of wet medium for evaporative cooling of air. International Journal of Refrigeration 124:64–74. doi:10.1016/j.ijrefrig.2020.12.014.
  • Zanchini, E., and C. Naldi. 2019. Energy saving obtainable by applying a commercially available M-cycle evaporative cooling system to the air conditioning of an office building in North Italy. Energy 179 (15 July):975–88. doi:10.1016/j.energy.2019.05.065.
  • Zhang, W., H. Ma, and S. Yang. 2016. An inexpensive, stable, and accurate relative humidity measurement method for challenging environments. Sensors 16 (3):398. doi:10.3390/s16030398.
  • Zhang, R., Y. Song, S. Han, L. Zhou, L. Li, H. Zhang, and X. Du. 2022. Film cooling performance enhancement of serrate-type trenched cooling holes by injecting mist into the cooling air. International Journal of Thermal Sciences 179:107631. doi:10.1016/j.ijthermalsci.2022.107631.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.