108
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of modified conical cavity receiver with different heat transfer fluids

ORCID Icon, ORCID Icon & ORCID Icon
Pages 6964-6980 | Received 27 Sep 2022, Accepted 01 Jan 2023, Published online: 30 May 2023

References

  • Afsharpanah, F., G. Cheraghian, F. Akbarzadeh Hamedani, E. Shokri, and S. S. Mousavi Ajarostaghi. 2022. Utilization of carbon-based nanomaterials and plate-fin networks in a cold PCM container with application in air conditioning of buildings. Nanomaterials 12:1927. doi:10.3390/nano12111927.
  • Afsharpanah, F., M. Izadi, F. A. Hamedani, S. S. Mousavi Ajarostaghi, and W. Yaïci. 2022. Solidification of nano-enhanced PCM-porous composites in a cylindrical cold thermal energy storage enclosure. Case Studies in Thermal Engineering 39:1DUMMY. doi:10.1016/j.csite.2022.102421.
  • Afsharpanah, F., K. Pakzad, S. S. M. Ajarostaghi, S. Poncet, and K. Sedighi. 2022. Accelerating the charging process in a shell and dual coil ice storage unit equipped with connecting plates. International Journal of Energy Research 46:7460–78. doi:10.1002/er.7654.
  • Afsharpanah, F., K. Pakzad, S. S. Mousavi Ajarostaghi, and M. Arıcı. 2022. Assessment of the charging performance in a cold thermal energy storage container with two rows of serpentine tubes and extended surfaces. Journal of Energy Storage 51:104464. doi:10.1016/j.est.2022.104464.
  • Aslfattahi, N., R. Loni, E. Bellos, G. Najafi, K. Kadirgama, W. S. W. Harun, and R. Saidur. 16, 2021. Efficiency enhancement of a solar dish collector operating with a novel soybean oil-based-MXene nanofluid and different cavity receivers. Journal of Cleaner Production 317:128430. doi:10.1016/j.jclepro.2021.128430.
  • Bellos, E., E. Bousi, C. Tzivanidis, and S. Pavlovic. 2019. Optical and thermal analysis of different cavity receiver designs for solar dish concentrators. Energy Conversion and Management X (2):100013. doi:10.1016/j.ecmx.2019.100013.
  • Bozorg, M. V., M. Hossein Doranehgard, K. Hong, and Q. Xiong. 2020. CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil–Al2O3 nanofluid. Renewable Energy 145:2598–614. doi:10.1016/j.renene.2019.08.042.
  • Daabo, A. M., A. Ahmad, S. Mahmoud, and R. K. Al-Dadah. 2017. Parametric analysis of small scale cavity receiver with optimum shape for solar powered closed Brayton cycle applications. Applied Thermal Engineering 122:626–41. doi:10.1016/j.applthermaleng.2017.03.093.
  • Duffie, J. A., and W. A. Beckman. 2013. Solar engineering of thermal processes, fourth. John Wiley & Sons, Inc. doi:10.1002/9781118671603.
  • Fang, J. B., J. J. Wei, X. W. Dong, and Y. S. Wang. 2011. Thermal performance simulation of a solar cavity receiver under windy conditions. Solar Energy 85:126–38. doi:10.1016/j.solener.2010.10.013.
  • Hestroffer, D., and C. Magnan. 1998. Wavelength dependency of the Solar limb darkening, Astron. Astrophys 333:338–42.
  • Hong, K., Y. Yang, S. Rashidi, Y. Guan, and Q. Xiong. 2021. Numerical simulations of a Cu–water nanofluid-based parabolic-trough solar collector. Journal of Thermal Analysis and Calorimetry 143:4183–95. doi:10.1007/s10973-020-09386-4.
  • K, A. S., and S. K. Natarajan. 2021a. Comparative Study of modified conical cavity receiver with other receivers for solar paraboloidal dish collector system. Environmental Science and Pollution Research. doi:10.1007/s11356-021-16127-z.
  • K, A. S., and S. K. Natarajan. 2021b. Thermal analysis of modified conical cavity receiver for a paraboloidal dish collector system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–12. doi:10.1080/15567036.2021.2017516.
  • Kopalakrishnaswami, A. S., R. Loni, G. Najafi, and S. K. Natarajan. 2022. Prediction of focal image for solar parabolic dish concentrator with square facets—an analytical model. Environmental Science & Pollution Research 30:20065–76. doi:10.1007/s11356-022-23551-2.
  • Krishna, Y., M. Faizal, R. Saidur, K. C. Ng, and N. Aslfattahi. 2020. State-of-the-art heat transfer fluids for parabolic trough collector. International Journal of Heat & Mass Transfer 152:119541. doi:10.1016/j.ijheatmasstransfer.2020.119541.
  • Le Roux, W. G., T. Bello-Ochende, and J. P. Meyer. 2014. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle. Energy Conversion and Management 84:457–70. doi:10.1016/j.enconman.2014.04.048.
  • Loni, R., E. Askari Asli-Ardeh, B. Ghobadian, A. B. Kasaeian, and E. Bellos. 2018. Thermal performance comparison between Al2O3/oil and SiO2/oil nanofluids in cylindrical cavity receiver based on experimental study. Renewable Energy 129:652–65. doi:10.1016/j.renene.2018.06.029.
  • Loni, R., E. Askari Asli-Ardeh, B. Ghobadian, A. B. Kasaeian, and S. Gorjian. 2017. Thermodynamic analysis of a solar dish receiver using different nanofluids. Energy 133:749–60. doi:10.1016/j.energy.2017.05.016.
  • Loni, R., E. A. Asli-Ardeh, B. Ghobadian, and A. Kasaeian. 2018. Experimental study of carbon nano tube/oil nanofluid in dish concentrator using a cylindrical cavity receiver: Outdoor tests. Energy Conversion and Management 165:593–601. doi:10.1016/j.enconman.2018.03.079.
  • Loni, R., E. A. Asli-Ardeh, B. Ghobadian, A. B. Kasaeian, and S. Gorjian. 2017. Thermodynamic analysis of a solar dish receiver using different nano fluids. Energy 133:749–60. doi:10.1016/j.energy.2017.05.016.
  • Loni, R., A. B. Kasaeian, E. Askari Asli-Ardeh, B. Ghobadian, and S. Gorjian. 2018. Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil. Energy 154:168–81. doi:10.1016/j.energy.2018.04.102.
  • Loni, R., A. B. Kasaeian, E. Askari Asli-Ardeh, B. Ghobadian, and W. G. Le Roux. 2016. Performance study of a solar-assisted organic Rankine cycle using a dish-mounted rectangular-cavity tubular solar receiver. Applied Thermal Engineering 108:1298–309. doi:10.1016/j.applthermaleng.2016.08.014.
  • Moravej, M., M. V. Bozorg, Y. Guan, L. K. B. Li, M. H. Doranehgard, K. Hong, and Q. Xiong. 2020. Enhancing the efficiency of a symmetric flat-plate solar collector via the use of rutile TiO2-water nanofluids, Sustain. Sustainable Energy Technologies and Assessments 40:100783. doi:10.1016/j.seta.2020.100783.
  • Nagarajan, P. K., J. Subramani, S. Suyambazhahan, and R. Sathyamurthy. 2014. Nanofluids for solar collector applications: A review. Energy Procedia 61:2416–34. doi:10.1016/j.egypro.2014.12.017.
  • Pavlovic, S., A. M. Daabo, E. Bellos, V. Stefanovic, S. Mahmoud, and R. K. Al-Dadah. 2017a. Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver. Journal of Cleaner Production 150:75–92. doi:10.1016/j.jclepro.2017.02.201.
  • Pavlovic, S., A. M. Daabo, E. Bellos, V. Stefanovic, S. Mahmoud, and R. K. Al-Dadah. 2017b. Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver. Journal of Cleaner Production 150:75–92. doi:10.1016/j.jclepro.2017.02.201.
  • Pavlović, S. R., E. Bellos, V. P. Stefanović, M. M. Djordjević, and D. M. Vasiljević. 2018. Thermal and exergetic investigation of a solar dish collector operating with mono and hybrid nanofluids. Thermal Science 22:S1383–S93. doi:10.2298/TSCI18S5383P.
  • Rajendran, D. R., E. G. Sundaram, and P. Jawahar. 2017. Experimental studies on the thermal performance of a parabolic dish solar receiver with the heat transfer fluids SiC + water nano fluid and water. Journal of Thermal Science 26:263–72. doi:10.1007/s11630-017-0938-3.
  • Sahu, S. K., K. Arjun Singh, and S. K. Natarajan. 2020. Design and development of a low-cost solar parabolic dish concentrator system with manual dual-axis tracking. International Journal of Energy Research 45:6446–56. doi:10.1002/er.6164.
  • Sahu, S. K., A. S. K, and S. K. Natarajan. 2021. Impact of double trumpet-shaped secondary reflector on flat receiver of a solar parabolic dish collector system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–19. doi:10.1080/15567036.2021.1918803.
  • Taylor, R. A., P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher. 2011. Applicability of nanofluids in high flux solar collectors. Journal of Renewable and Sustainable Energy 3:023104. doi:10.1063/1.3571565.
  • Uzair, M., T. Anderson, and R. Nates. 2016. Impact of dish structure on the convective heat loss from a parabolic dish solar cavity receiver. Asia-Pacific Sol Res Conference.
  • Uzair, M., T. N. Anderson, and R. J. Nates. 2017. The impact of the parabolic dish concentrator on the wind induced heat loss from its receiver. Solar Energy 151:95–101. doi:10.1016/j.solener.2017.05.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.