140
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Heating performances of corn straw particles in a microwave chamber

, , , , , & ORCID Icon show all
Pages 7186-7197 | Received 12 Mar 2023, Accepted 10 Apr 2023, Published online: 02 Jun 2023

References

  • Cui, L., C. Liu, H. Liu, W. Zhao, and Y. Zhang. 2023. Exergy transfer analysis of biomass and microwave based on experimental heating process. Sustainability 15 (1):388. doi:10.3390/su15010388.
  • Dineshkumar, M., K. M. Meera Sheriffa Begum, B. Shrikar, Ramanathan, A. 2021. Synthesis and characterization study of solid carbon biocatalyst produced from novel biomass char in a microwave pyrolysis. Materials Today: Proceedings 46:9814–19. doi:10.1016/j.matpr.2020.10.885.
  • Dong, Y., S. Mao, F. Guo, Shu, Bai, J., Qian, L., Bai, Y. 2022. Coal gasification fine slags: Investigation of the potential as both microwave adsorbers and catalysts in microwave-induced biomass pyrolysis applications. Energy 238:121867. doi:10.1016/j.energy.2021.121867.
  • Guo, X., L. Shouguang, Y. Zheng, and B. Ci. 2016. Preparation and characterization of bio-oil by microwave pyrolysis of biomass. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 38 (1):133–39. doi:10.1080/15567036.2011.649340.
  • Hong, K., F. Wenming, M. Guang, Y. Zhang, and B. Li. 2021. Microwave heating performances of low density polyethylene (LDPE) plastic particles. Journal of Analytical and Applied Pyrolysis 160:105356. doi:10.1016/j.jaap.2021.105356.
  • Hosseinzadeh-Bandbafha, H., A. Fallahi, H. Ghasemkhani, Shafiei, M, Ghanavati, H., Chong, C. T., Lam, S. S., Tabatabaei, M., Aghbashlo, M. 2022. Exergetic sustainability evaluation of horse manure biomass valorization by microwave pyrolysis. Fuel 323:124286. doi:10.1016/j.fuel.2022.124286.
  • Huang, Y., P. Chiueh, W. Kuan, et al. 2018. Product distribution and heating performance of lignocellulosic biomass pyrolysis using microwave heating. Energy Procedia 152:910–15. doi:10.1016/j.egypro.2018.09.092.
  • Huang, Y., P. Chiueh, W. Kuan, Lo, S.L. 2016. Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics. Energy 100:137–44. doi:10.1016/j.energy.2016.01.088.
  • IEA. 2019. World energy Outlook 2019. Paris: OECD Publishing.
  • Jawad, A. H., N. Najwa Abd Malek, T. Khadiran, ALOthman, Z.A., Yaseen, Z.M. 2022. Mesoporous high-surface-area activated carbon from biomass waste via microwave-assisted-H3PO4 activation for methylene blue dye adsorption: An optimized process. Diamond and Related Materials 128:109288. doi:10.1016/j.diamond.2022.109288.
  • Jingbo, Q., Y. Sun, M. Kumar Awasthi, Y. Liu, X. Xu, X. Meng, and H. Zhang. 2021. Effect of different aerobic hydrolysis time on the anaerobic digestion characteristics and energy consumption analysis. Bioresource Technology 320:124332. doi:10.1016/j.biortech.2020.124332.
  • Jin, Y., H. Shanying, Z. Zhang, B. Zhu, and D. Bai. 2022. The path to carbon neutrality in China: A paradigm shift in fossil resource utilization. Resources Chemicals and Materials 1 (1):129–35. doi:10.1016/j.recm.2022.01.003.
  • Kangqiang, L., G. Chen, L. Xiteng, J. Peng, R. Ruan, M. Omran, and J. Chen. 2019. High-temperature dielectric properties and pyrolysis reduction characteristics of different biomass-pyrolusite mixtures in microwave field. Bioresource Technology 294:12221. doi:10.1016/j.biortech.2019.122217.
  • Liu, Z., Y. Sun, X. Xinrui, X. Meng, J. Qu, Z. Wang, C. Liu, and B. Qu. 2020. Preparation, characterization and application of activated carbon from corn cob by KOH activation for removal of Hg(II) from aqueous solution. Bioresource Technology 306:12315. doi:10.1016/j.biortech.2020.123154.
  • Longzhi, L., D. Cai, L. Zhang, Y. Zhang, Z. Zhao, Z. Zhang, J. Sun, Y. Tan, and G. Zou. 2023. Synergistic effects during pyrolysis of binary mixtures of biomass components using microwave-assisted heating coupled with iron base tip-metal. Renewable Energy 203:312–22. doi:10.1016/j.renene.2022.12.076.
  • Mao, S., R. Shu, F. Guo, J. Bai, L. Xu, K. Dong, H. Wei, and L. Qian. 2022. Fuel gas production from microwave-induced biomass pyrolysis using char-supported metal composites as both catalysts and microwave absorbers. International Journal of Hydrogen Energy 47 (60):25309–21. doi:10.1016/j.ijhydene.2022.05.260.
  • Patel, H., J. Divecha, and A. Shah. 2017. Microwave assisted alkali treated wheat straw as a substrate for co-production of (hemi)cellulolytic enzymes and development of balanced enzyme cocktail for its enhanced saccharification. Journal of the Taiwan Institute of Chemical Engineers 71:298–306. doi:10.1016/j.jtice.2016.12.032.
  • Prakash, P., L. Kamble, and K. N. Sheeba. 2015. Experimental Studies on Biomass Pyrolysis Using Microwave Radiation. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 37:2675–83. doi:10.1080/15567036.2012.713079.
  • Qiu, T., C. Liu, L. Cui, Liu, Muhammad, K., Zhang, Y. 2023. Comparison of corn straw biochars from electrical pyrolysis and microwave pyrolysis. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects. 45(1):636–49. doi:10.1080/15567036.2023.2172484.
  • Quan, B., J. Cai, Y. Liu, M. Cao, L. Dong, R. Ruan, and H. Mao. 2021. The effect of fuzzy PID temperature control on thermal behavior analysis and kinetics study of biomass microwave pyrolysis. Journal of Analytical and Applied Pyrolysis 158:10517. doi:10.1016/j.jaap.2021.105176.
  • Ravikumar, C., P. Senthil Kumar, S. K. Subhashni, Tejaswini, P. V., Varshini, V. 2017. Microwave assisted fast pyrolysis of corn cob, corn stover, saw dust and rice straw: Experimental investigation on bio-oil yield and high heating values. Sustainable Materials and Technologies 11:19–27. doi:10.1016/j.susmat.2016.12.003.
  • Shanglien, L., Y. Huang, P. Chiueh, and W.-H. Kuan. 2017. Microwave pyrolysis of lignocellulosic biomass. Energy Procedia 105:41–46. doi:10.1016/j.egypro.2017.03.277.
  • Sun, J., J. Luo, J. Lin, et al. 2022. Study of co-pyrolysis endpoint and product conversion of plastic and biomass using microwave thermogravimetric technology. Energy 247:123547. doi:10.1016/j.energy.2022.123547.
  • Vecten, S., M. Wilkinson, N. Bimbo 2021. Hydrogen-rich syngas production from biomass in a steam microwave-induced plasma gasification reactor. Bioresource Technology 337:125324. doi:10.1016/j.biortech.2021.125324.
  • Wenming, F., J. Dai, Y. Zhang, M. Guang, Y. Liu, and B. Li. 2021. Heating performances of high density polyethylene (HDPE) plastic particles in a microwave chamber. Sustainable Energy Technologies and Assessments 48:101581. doi:10.1016/j.seta.2021.101581.
  • Wenya, A., F. Jie, X. Mao, Q. Kang, C. Ran, Y. Liu, H. Zhang, Z. Gao, J. Li, G. Liu, et al. 2018. Microwave assisted preparation of activated carbon from biomass: A review. Renewable & Sustainable Energy Reviews 92:958–79. doi:10.1016/j.rser.2018.04.051.
  • Xinhua, W., X. Yang, and K. Huang. 2009. Hot spots during production of CaSO4 under microwave radiation. CIESC Journal 60 (2):299–303.
  • Xinxin, L., X. Yan, Y. Meiying, C. Song, J. Gao, J. Zhu, and Y. Liu. 2022. Enhancement of anaerobic digestion performance of corn straw via combined sodium hydroxide-cellulase pretreatment. Biochemical Engineering Journal 187:108652. doi:10.1016/j.bej.2022.108652.
  • Yang, H., L. Bai, Y. Duan, Xie, H., Wang, X., Zhang, R., Ji, X., Si, C. 2023. Upcycling corn straw into nanocelluloses via enzyme-assisted homogenization: Application as building blocks for high-performance films. Journal of Cleaner Production 390:136215. doi:10.1016/j.jclepro.2023.136215.
  • Yang, D., L. Jiang, S. Yang. 2017. Experimental study on preparation of straw activated carbon by microwave heating. Procedia Engineering 205:3538–44. doi:10.1016/j.proeng.2017.09.923.
  • Yang, L., L. Xiujin, H. Yuan, B. Yan, G. Yang, Y. Lu, J. Li, and X. Zuo. 2023. Enhancement of biomethane production and decomposition of physicochemical structure of corn straw by combined freezing-thawing and potassium hydroxide pretreatment. Energy 268:126633. doi:10.1016/j.energy.2023.126633.
  • Zhang, T., K. Kang, S. Nanda, et al. 2022. Comparative study on fuel characteristics and pyrolysis kinetics of corn residue-based hydrochar produced via microwave hydrothermal carbonization. Chemosphere 291:132787. doi:10.1016/j.chemosphere.2021.132787.
  • Zhang, L., Y. Tan, D. Cai. 2022. Enhanced pyrolysis of woody biomass under interaction of microwave and needle-shape metal and its production properties. Energy 249:123667. doi:10.1016/j.energy.2022.123667.
  • Zhang, Z., and Z. K. Zhao. 2010. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresource Technology 101:1111–14. doi:10.1016/j.biortech.2009.09.010.
  • Zhang, Y., C. Zhou, Z. Deng, et al. 2022. Influence of corn straw on distribution and migration of nitrogen and heavy metals during microwave-assisted pyrolysis of municipal sewage sludge. The Science of the Total Environment 815:152303. doi:10.1016/j.scitotenv.2021.152303.
  • Zhao, X., J. Zhang, Z. Song, H. Liu, L. Li, and C. Ma. 2011. Microwave pyrolysis of straw bale and energy balance analysis. Journal of Analytical and Applied Pyrolysis 92 (1):43–49. doi:10.1016/j.jaap.2011.04.004.
  • Zhou, H., X. Kaili, X. Yao, J. Li, Z. Zhao, and S. Chen. 2022. Syngas composition and ash characteristics of corn straw under a CO2 atmosphere. Biomass & bioenergy 166:106630. doi:10.1016/j.biombioe.2022.106630.
  • Zou, R., C. Wang, M. Qian. 2022. Catalytic co-pyrolysis of solid wastes (low-density polyethylene and lignocellulosic biomass) over microwave assisted biochar for bio-oil upgrading and hydrogen production. Journal of Cleaner Production 374:133971. doi:10.1016/j.jclepro.2022.133971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.