159
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Numerical analysis of the distribution of combustion products from methane explosions in a full-scale tunnel using all-speed CFD code GASFLOW-MPI

, , , , &
Pages 7105-7121 | Received 06 Mar 2023, Accepted 07 May 2023, Published online: 31 May 2023

References

  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2017. Deflagration of premixed methane–air in a large scale detonation tube. Process Safety and Environmental Protection 109:374–86. doi:10.1016/j.psep.2017.03.035.
  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2018. Flame deflagration in side-on vented detonation tubes: A large scale study. Journal of Hazardous Materials 345:38–47. doi:10.1016/j.jhazmat.2017.11.014.
  • Cammarota, F., A. Di Benedetto, P. Russo, and E. Salzano. 2010. Experimental analysis of gas explosions at non-atmospheric initial conditions in cylindrical vessel. Process Safety and Environmental Protection 88 (5):341–49. doi:10.1016/j.psep.2010.05.001.
  • Cashdollar, K. L., J. E. Urosek, and M. J. Sapko. 2009. Results of in-mine research in support of the investigation of the sago mine explosion. Centers for Disease Control and Preventi-On.
  • Cheng, J., B. Zhang, H. D. Ng, Liu, H., and Wang, F . 2021. Effects of inert gas jet on the transition from deflagration to detonation in a stoichiometric methane-oxygen mixture. Fuel 285:119237. doi:10.1016/j.fuel.2020.119237.
  • Chen, D., C. Wu, J. Li, and K. Liao. 2023. An overpressure-time history model of methane-air explosion in tunnel-shape space. Journal of Loss Prevention in the Process Industries 82:105004. doi:10.1016/j.jlp.2023.105004.
  • Dahoe, A. E., and L. P. H. De Goey. 2003. On the determination of the laminar burning velocity from closed vessel gas explosions. Journal of Loss Prevention in the Process Industries 16 (6):457–78. doi:10.1016/S0950-4230(03)00073-1.
  • Davis, S. G., D. Engel, and K. Van Wingerden. 2014. Complex explosion development in mines: Case study-2010 upper big branch mine explosion. Process Safety Progress 34 (3):286–303. doi:10.1002/prs.11710.
  • Fernández-Tarrazo, E., A. L. Sánchez, A. Liñán, and F. A. Williams. 2006. A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combustion & Flame 147:32–38. doi:10.1016/j.combustflame.2006.08.001.
  • Gao, K., S. Li, R. Han, R.-Z. Li, Z.-M. Liu, Z.-P. Qi, and Z.-Y. Liu. 2020. Study on the propagation law of gas explosion in the space based on the goaf characteristic of coal mine. Safety Science 127:104693. doi:10.1016/j.ssci.2020.104693.
  • Gieras, M., and R. Klemens. 2009. Experimental studies of explosions of methane-air mixtures in a constant volume chamber. Combustion Science and Technology 181 (4):641–53. doi:10.1080/00102200802665102.
  • Goldfarb, I., V. Gol’dshtein, G. Kuzmenko, and S. Sazhin. 1999. Thermal radiation effect on thermal explosion in gas containing fuel droplets. Combustion Theory and Modelling 3 (4):769–87. doi:10.1088/1364-7830/3/4/309.
  • Huang, J., X. Gao, and C. Wang. 2018. Flame acceleration and deflagration-to-detonation transition in narrow channels with thin obstacles. Modern Physics Letters B 32 (29):1850354. doi:10.1142/S0217984918503542.
  • Kundu, S., J. Zanganeh, and B. Moghtaderi. 2016. A review on understanding explosions from methane–air mixture. Journal of Loss Prevention in the Process Industries 40:507–23. doi:10.1016/j.jlp.2016.02.004.
  • Kuznetsov, M., G. Ciccarelli, S. Dorofeev, Alekseev, V., Yankin, Y., and Kim, T. H . 2002. DDT in methane-air mixtures. Shock Waves. 12(3):215–20. doi:10.1007/s00193-002-0155-0.
  • Kuznetsov, M., A. Denkevits, A. Veser, and A. Friedrich. 2022. Flame propagation regimes and critic-al conditions for flame acceleration and detonation transition for hydrogen-air mixtures at cryogenic temperatures. International Journal of Hydrogen Energy 47 (71):30743–56. doi:10.1016/j.ijhydene.2022.07.024.
  • Lautkaski, R. 1997. Understanding vented gas explosions. Finland: VTT Energy.
  • Lei, B., Q. Wei, R. Pang, and J. Xiao. 2023. The effect of hydrogen addition on methane/air explosion characteristics in a 20-L spherical device. Fuel 338:127351. doi:10.1016/j.fuel.2022.127351.
  • Lei, B. W., J. J. Xiao, M. Kuznetsov, and T. Jordan. 2022. Effects of heat transfer mechanism on methane-air mixture explosion in 20 L spherical device. Journal of Loss Prevention in the Process Industries 80:104864. doi:10.1016/j.jlp.2022.104864.
  • Li, Z., L. Chen, H. Yan, Fang, Q., Zhang, Y, Xiang, H., and Wang, S . 2021. Gas explosions of methane-air mixtures in a large-scale tube. Fuel 85:119239. doi:10.1016/j.fuel.2020.119239.
  • Lin, B., K. Congguang, and Z. Hui. 2009. Research on the influence of pipe wall heat dissipation on gas explosion propagation characteristics. Journal of China University of Mining and Technology 38 (1):1–4. doi:10.1016/j.applthermaleng.2017.02.084.
  • Luo, Z. M., and F. M. Cheng. 2013. Numerical simulation of gas explosion in confined space with FLACS. Journal of the China Coal Society 38:381–1387.
  • Lv, W., B. Liu, and L. Wang. 2013. Research on temperature changing law after coalmine explosion in roadway. Journal of Harbin Institute of Technology 45:108–13.
  • Mittal, M. 2017. Explosion pressure measurement of methane-air mixtures in different sizes of confinement. Journal of Loss Prevention in the Process Industries 46:200–08. doi:10.1016/j.jlp.2017.02.022.
  • Pang, L., Q. Zhang, T. Wang, D. C. Lin, and L. Cheng. 2012. Influence of laneway support spacing on methane/air explosion shock wave. Safety Science 50 (1):83–89. doi:10.1016/j.ssci.2011.07.005.
  • Qu, Z., X. Zhou, and H. Wang. 2008. Overpressure attenuation of shock wave during gas explosion. Journal of the China Coal Society 33:410–14.
  • Siegel, R., and J. R. Howell. 1992. Thermal radiation heat transfer. third ed. Washington: Hemisphere Publishing.
  • Tan, B., Y. Liu, H. Liu, H. Wang, and T. Li. 2021. Research on size effect of gas explosion in the Roadway. Tunnelling and Underground Space Technology 112:103921. doi:10.1016/j.tust.2021.103921.
  • Thomas, G. 2012. Some observations on the initiation and onset of detonation. Physical and Engineering Sciences in Medicine 370 (1960):715–39. doi:10.1098/rsta.2011.0368.
  • Travis, J. R., and D. P. Koch. 2014. GASFLOW simulations of a Bonfire test. International Journal of Hydrogen Energy 39 (24):13041–47. doi:10.1016/j.ijhydene.2014.06.026.
  • Valiev, D., V. Bychkov, V. Y. Akkerman, Law, C. K., and Eriksson, L. E. 2010. Flame acceleration in channels with obstacles in the deflagration-to-detonation transition. Combustion & Flame 157 (5):1012–21. doi:10.1016/j.combustflame.2009.12.021.
  • Vishwakarma, R. K., V. Ranjan, and J. Kumar. 2014. Comparison of explosion parameters for Methane–Air mixture in different cylindrical flameproof enclosures. Journal of Loss Prevention in the Process Industries 31:82–87. doi:10.1016/j.jlp.2014.07.002.
  • Wang, C., Y. Zhao, and E. K. Addai. 2017. Investigation on propagation mechanism of large scale mine gas explosions. Journal of Loss Prevention in the Process Industries 49:342–47. doi:10.1016/j.jlp.2017.07.011.
  • Xiao, J., W. Breitung, M. Kuznetsov, H. Zhang, J. R. Travis, R. Redlinger, and T. Jordan. 2017. GASFLOW-MPI: A new 3-D parallel all-speed CFD code for turbulent dispersion and combustion simulations Part II: First analysis of the hydrogen explosion in Fukushima Daiichi Unit 1. International journal of hydrogen energy 42 (12):8369–81. doi:10.1016/j.ijhydene.2017.01.219.
  • Xiao, J., M. Kuznetsov, and J. R. Travis. 2018. Experimental and numerical investigations of hydrogen jet fire in a vented compartment. International Journal of Hydrogen Energy 43 (21):10167–84. doi:10.1016/j.ijhydene.2018.03.178.
  • Xiao, H., and E. S. Oran. 2020. Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes. Combustion & Flame 220:378–93. doi:10.1016/j.combustflame.2020.07.013.
  • Xiao, J., J. R. Travis, and M. Kuznetsov. 2015. Numerical investigations of heat losses to confinement structures from hydrogen-air turbulent flames in ENACCEF facility. International Journal of Hydrogen Energy 40 (38):13106–20. doi:10.1016/j.ijhydene.2015.07.090.
  • Ye, Q., G. G. X. Wang, Z. Jia, and C. Zheng. 2017. Experimental study on the influence of wall heat effect on gas explosion and its propagation. Applied Thermal Engineering 118:392–97. doi:10.1016/j.applthermaleng.2017.02.084.
  • Zhang, Q., and Q. J. Ma. 2015. Dynamic pressure induced by a methane–air explosion in a coal mine. Process Safety & Environmental Protection 93:233–39. doi:10.1016/j.psep.2014.05.005.
  • Zhang, Q., B. Qin, H. Yan, and D.-C. Lin. 2016. A methodology to predict shock overpressure decay in a tunnel produced by a premixed methane/air explosion. Journal of Loss Prevention in the Process Industries 44:275–81. doi:10.1016/j.jlp.2016.10.002.
  • Zhu, Y., D. Wang, Z. Shao, Xu, C., Li, M., and Zhang, Y . 2021. Characteristics of methane-air explosions in large-scale tunnels with different structures. Tunn Undergr Space Technol 109:103767. doi:10.1016/j.tust.2020.103767.
  • Zhu, Y., D. Wang, Z. Shao, X. Zhu, C. Xu, and Y. Zhang. 2020. Investigation on the overpressure of methane-air mixture gas explosions in straight large-scale tunnels. Process Safety and Environmental Protection 135:101–12. doi:10.1016/j.psep.2019.12.022.
  • Zipf, J. R. K., V. N. Gamezo, K. M. Mohamed, E. S. Oran, and D. A. Kessler. 2014. Deflagration-to-detonation transition in natural gas–air mixtures. Combustion & Flame 61 (8):2165–76. doi:10.1016/j.combustflame.2014.02.002.
  • Zipf, R. K., M. J. Sapko, J. F Brune, et al. 2007. Explosion pressure design criteria for new seals i-n U.S. coal mines. In Deptartment of Health and Human Services, Centers for Disease Contr-ol and Prevention, Vol. 76, 9500. Pittsburgh, PA: National Institute for Occupational Safety and Health, Pittsburgh Resea-rch Laboratory, IC.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.