126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of thermal performance of a parabolic trough solar collector using different heat transfer fluids

& ORCID Icon
Pages 7198-7221 | Received 07 Feb 2023, Accepted 25 May 2023, Published online: 04 Jun 2023

References

  • Abidi, A. 2022. Improving the efficiency of parabolic solar collector (PSC) containing magnetic nanofluid with absorber pipe equipped with square twisted Turbulator. Sustainable Energy Technologies and Assessments 52 (PC):102083. doi:10.1016/j.seta.2022.102083.
  • Ağbulut, Ü., M. Karagöz, S. Sarıdemir, and A. Öztürk. 2020. Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and Noise characteristics of a CI engine. Fuel 270 (February):117521. doi:10.1016/j.fuel.2020.117521.
  • Aldaz, L., Xabier, R., Amaia, M., Fabienne, S., Estelle, L.B., Angela, D. 2022. The influence of optical characterization at different angles of incidence on optical efficiency calculation of a novel small-size parabolic trough collector for process heat applications. AIP Conference Proceedings, 2445. 120001-1–120001–8. doi:10.1063/5.0085907.
  • Allauddin, U., M. U. Rafique, O. Malik, O. Rashid, A. Waseem, P. King, M. Karim, and H. Almond. 2023. Investigation of the thermo-hydraulic performance of a roughened parabolic trough collector. Applied Thermal Engineering 219:119523. doi:10.1016/j.applthermaleng.2022.119523.
  • Al-Oran, O., A. A’saf, and F. Lezsovits. 2022. Experimental and modelling investigation on the effect of inserting ceria-based distilled water nanofluid on the thermal performance of parabolic trough collectors at the weather conditions of amman: A case study. Energy Reports 8:4155–69. doi:10.1016/j.egyr.2022.03.030.
  • Arnaoutakis, N., M. Souliotis, and S. Papaefthimiou. 2017. Comparative experimental life cycle assessment of two commercial solar thermal devices for domestic applications. Renewable Energy 111:187–200. doi:http://dx.doi.org/10.1016/j.renene.2017.04.008.
  • Barbosa, E. G., M. A. Martins, M. E. Viana de Araujo, N. D. S. Renato, S. Zolnier, E. G. Pereira, and M. de Oliveira Resende. 2020. Experimental evaluation of a stationary parabolic trough solar collector: influence of the concentrator and heat transfer fluid. Journal of Cleaner Production 276:124174. doi:10.1016/j.jclepro.2020.124174.
  • Basbous, N., M. Taqi, and M. Ahmed Janan. 2016. “Thermal performances analysis of a parabolic trough solar collector using different nanofluids.” International Renewable and Sustainable Energy Conference (IRSEC), Casablanca, Morocco.
  • Bellos, E., D. Korres, C. Tzivanidis, and K. A. Antonopoulos. 2016. Design, simulation and optimization of a compound parabolic collector. Sustainable Energy Technologies and Assessments 16:53–63. doi:10.1016/j.seta.2016.04.005.
  • Bellos, E., and C. Tzivanidis. 2020. Enhancing the performance of a parabolic trough collector with combined thermal and optical techniques. Applied Thermal Engineering 164 (September 2019):114496. doi:10.1016/j.applthermaleng.2019.114496.
  • Bilal, F. R., U. C. Arunachala, and H. M. Sandeep. 2018. Experimental validation of energy parameters in parabolic trough collector with plain absorber and analysis of heat transfer enhancement techniques. Journal of Physics Conference Series 953 (1):012030. doi:10.1088/1742-6596/953/1/012030.
  • Chafie, M., M. F. Ben Aissa, S. Bouadila, M. Balghouthi, A. Farhat, and A. Guizani. 2016. Experimental investigation of parabolic trough collector system under tunisian climate: design, manufacturing and performance assessment. Applied Thermal Engineering 101:273–83. doi:10.1016/j.applthermaleng.2016.02.073.
  • Cruickshank, C. A., and S. J. Harrison. 2010. Heat loss characteristics for a typical solar domestic hot water storage. Energy & Buildings 42 (10):1703–10. doi:10.1016/j.enbuild.2010.04.013.
  • Darbari, B., M. Derikvand, and B. Shabani. 2023. Thermal performance improvement of a LS-2 parabolic trough solar collector using porous disks. Applied Thermal Engineering 228 (November 2022):120546. doi:10.1016/j.applthermaleng.2023.120546.
  • Do Carmo Zidan, D., C. B. Maia, M. Diogo, and D. Do Carmo Zidan. 2022. Performance evaluation of various nanofluids for parabolic trough collectors. Sustainable Energy Technologies and Assessments 50 (July 2021):101865. doi:10.1016/j.seta.2021.101865.
  • Dou, L., B. Ding, Q. Zhang, G. Kou, and M. Mu. 2023. Numerical investigation on the thermal performance of parabolic trough solar collector with synthetic Oil/Cu Nanofluids. Applied Thermal Engineering 227 (March):120376. doi:10.1016/j.applthermaleng.2023.120376.
  • Eastman. Therminol Heat Transfer Fluids by. “THERMINOL 55 ® Heat Transfer Fluid, Technical Data Sheet, Kingsport, TN 37662-5280 U.S.A.” : 1–8. Kingsport, TN 37662-5280 U.S.A.
  • Evangelos, B., C. Tzivanidis, and K. A. Antonopoulos. 2017. A detailed working fluid investigation for solar parabolic trough Collectors. Applied Thermal Engineering 114:374–86. doi:10.1016/j.applthermaleng.2016.11.201.
  • Fathabadi, H. 2020. Novel solar collector: evaluating the impact of nanoparticles added to the collector’s working fluid, heat transfer fluid temperature and flow rate. Renewable Energy 148:1165–73. doi:10.1016/j.renene.2019.10.008.
  • Ghodbane, M., Z. Said, O. Ketfi, B. Boumeddane, A. T. Hoang, M. Sheikholeslami, M. E. H. Assad, M. Hossein Ahmadi, V. N. Nguyen, V. D. Tran, et al. 2022. Thermal performance assessment of an ejector air-conditioning system with parabolic trough collector using R718 as a refrigerant: A case study in Algerian Desert Region. Sustainable Energy Technologies and Assessments. 53(PB):102513. doi:https://doi.org/10.1016/j.seta.2022.102513.
  • Gulzar, O., A. Qayoum, and R. Gupta. 2018. Photo ‑ thermal characteristics of hybrid nanofluids based on therminol ‑ 55 oil for concentrating solar collectors. Applied Nanoscience 9 (5):1133–43. doi:10.1007/s13204-018-0738-4.
  • Hamada, M. A., M. M. A. A.-S. Hesham Khalil, and S. W. Sharshir. 2023. An experimental investigation of nanofluid, nanocoating, and energy storage materials on the performance of parabolic trough collector. Applied Thermal Engineering 219 (PA):119450. doi:10.1016/j.applthermaleng.2022.119450.
  • Irshad, K., N. Islam, H. Zahir, A. Ali, and A. F. AbdelGawad. 2022. Thermal performance investigation of therminol55/MWCNT + CuO nanofluid flow in a heat exchanger from an exergy and entropy approach case studies in thermal engineering thermal performance investigation of therminol55/MWCNT + CuO nanofluid flow in a He. Case Studies in Thermal Engineering 34 (May):102010. doi:10.1016/j.csite.2022.102010.
  • Kalogirou, S. A. 2009. Solar energy engineering: processes and systems solar energy engineering: processes and systems.
  • Kalogirou, S. A. 2012. A detailed thermal model of a parabolic trough collector receiver. Energy 48 (1):298–306. doi:10.1016/j.energy.2012.06.023.
  • Kalogirou, S. A. 2014. Solar thermal power systems.
  • Kurs, B. 2019. Thermal performance assessment of internal longitudinal Fi Ns With sinusoidal lateral surfaces in parabolic trough receiver tubes. Renewable Energy 140:816–27. doi:10.1016/j.renene.2019.03.106.
  • Liu, X., M. Vahabzadeh, Q. Xiong, and L. Weidong. 2022. Numerical analysis of a new design strategy for parabolic trough solar collectors for improved production and consumption of solar energy in the belt and road initiative countries. Journal of Cleaner Production 367 (July):133079. doi:10.1016/j.jclepro.2022.133079.
  • Madadi Avargani, V., and M. Divband. 2022. Performance evaluation of a solar water heating system with glass-covered parabolic trough concentrators, under different system tracking Modes. Journal of Thermal Analysis and Calorimetry 147 (7):4873–88. doi:10.1007/s10973-021-10845-9.
  • Madala, S., and R. F. Boehm. 2016. A review of nonimaging solar concentrators for stationary and passive tracking applications. Renewable & Sustainable Energy Reviews 0–1. doi:10.1016/j.rser.2016.12.058.
  • Mostafa, G., A. M. Kermani, and H. Tash Shamsabadi. 2023. Experimental investigation of a parabolic trough collector-thermoelectric generator (PTC-TEG) hybrid solar system with a pressurized heat transfer Fluid. Renewable Energy 202 (July 2022):270–79. doi:10.1016/j.renene.2022.11.110.
  • Mwesigye, A., and İ. Halil Yılmaz. 2020. Thermal and Thermodynamic Benchmarking of Liquid Heat Transfer Fluids in a High Concentration Ratio Parabolic Trough Solar Collector System. Journal of Molecular Liquids 319:319. doi:10.1016/j.molliq.2020.114151.
  • Özcan, A., A. Gencer Devecioğlu, and V. Oruç. 2022. Experimental and numerical analysis of a parabolic trough solar collector for water heating application. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (2):4184–203. doi:10.1080/15567036.2021.1924317.
  • Panduro, C., E. Anabela, F. Finotti, and G. Largiller. 2022. A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors. Applied Thermal Engineering 211 (March):118346. doi:10.1016/j.applthermaleng.2022.118346.
  • Pathak, K., V. Sudhir, V. Tyagi, and K. Chopra. 2022. Recent development in thermal performance of Solar Water Heating (SWH) Systems. Materials Today: Proceedings 63:778–85. doi:10.1016/j.matpr.2022.05.502.
  • Rafael, A., L. Valenzuela, A. L. Avila-Marin, and P. L. Garcia-Ybarra. 2019. Simplified heat transfer model for parabolic trough solar collectors using supercritical CO2. Energy Conversion & Management 196 (March):807–20. doi:10.1016/j.enconman.2019.06.029.
  • Rajkumar, M., A. Agrawal, and P. V. Baredar. 2020. A comprehensive review of different heat transfer working fluids for solar thermal parabolic trough concentrator. Materials Today: Proceedings 46 (xxxx):5490–500. doi:10.1016/j.matpr.2020.09.240.
  • Saad, N. B., A. M. M. Abdala, and M. Fatouh. 2022. Thermal enhancement of parabolic trough collectors using absorber tubes with internally longitudinal round edge fins. Engineering Research Journal 173:356–75. doi:10.21608/erj.2022.223302.
  • Said, Z., M. Ghodbane, B. Boumeddane, A. K. Tiwari, L. S. Sundar, C. Li, N. Aslfattahi, and E. Bellos. 2022. Solar energy materials and solar cells energy, exergy, economic and environmental (4E) analysis of a parabolic trough solar collector using mxene based silicone oil nanofluids pressure loss Pa. Solar Energy Materials and Solar Cells 239 (March):111633. doi:10.1016/j.solmat.2022.111633.
  • Samiezadeh, S., R. Khodaverdian, M. H. Doranehgard, H. Chehrmonavari, and Q. Xiong. 2022. CFD simulation of thermal performance of hybrid Oil-Cu-Al2O3 Nanofluid flowing through the porous receiver tube inside a finned parabolic trough solar collector. Sustainable Energy Technologies and Assessments 50 (August 2021):101888. doi:10.1016/j.seta.2021.101888.
  • Siavashi, M., M. Vahabzadeh Bozorg, and M. Hesam Toosi. 2021. A numerical analysis of the effects of nanofluid and porous media utilization on the performance of parabolic trough solar Collectors. Sustainable Energy Technologies and Assessments 45 (March):101179. doi:10.1016/j.seta.2021.101179.
  • Singh, R. K., and P. Chandra. 2023. Parabolic trough solar collector: a review on geometrical interpretation, mathematical model, and thermal performance augmentation. Engineering Research Express 5 (1):012003. doi:10.1088/2631-8695/acc00a.
  • Singh, R., Y. Pal Chandra, and S. Kumar. 2017. Computational and parametric analysis of parabolic trough collector with different heat transfer fluids. Advances in Intelligent Systems & Computing, 547. doi:10.1007/978-981-10-3325-4_32.
  • Stanek, B., Ł. B. Daniel We, S. Rulik, and S. Rulik. 2022. Solar tracker error impact on linear absorbers efficiency in parabolic trough collector – Optical and thermodynamic study. Renewable Energy 196:598–609. doi:10.1016/j.renene.2022.07.021.
  • Subramani, J., P. K. Nagarajan, S. Wongwises, S. A. El-Agouz, and R. Sathyamurthy. 2018. Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector Using Al2O3 nanofluids. Environmental Progress & Sustainable Energy 37 (3):1149–59. doi:10.1002/ep.12767.
  • Tripanagnostopoulos, Y., and M. Souliotis. 2004. Integrated collector storage solar systems with asymmetric CPC reflectors. Renewable Energy 29 (2):223–48. doi:10.1016/S0960-1481(03)00195-2.
  • Vaghasia, J. G., J. K. Ratnadhariya, H. Panchal, K. K. Sadasivuni, D. Ponnamma, M. Elkelawy, and H. A.-E. Bastawissi. 2022. Experimental performance investigations on various orientations of evacuated double absorber tube for solar parabolic trough concentrator. International Journal of Ambient Energy 43 (1):492–99. doi:10.1080/01430750.2019.1653980.
  • Vahidinia, F., H. Khorasanizadeh, and A. Aghaei. 2021. Comparative energy, exergy and co2 emission evaluations of a LS-2 parabolic trough solar collector using Al2O3/SiO2-Syltherm 800 Hybrid Nanofluid. Energy Conversion & Management 245:114596. doi:10.1016/j.enconman.2021.114596.
  • Zarrag, K. Z., F. M. Abed, and S. Y. Kasim. 2021. Experimental and theoretical study of parabolic trough solar collector performance without automatic tracking system. Journal of University of Anbar for Pure Science (JUAPS) 15 (1):37–48. doi:10.37652/juaps.2022.172430.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.