135
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Application of microbial polysaccharides as viscosifier agent for enhanced oil recovery: a comprehensive review

ORCID Icon, ORCID Icon, &
Pages 7329-7345 | Received 15 Nov 2022, Accepted 23 May 2023, Published online: 08 Jun 2023

References

  • Alagic, E., N. Dopffel, G. Bødtker, and B. Hovland. 2020. Biodegradation mitigation and protection strategies for the biopolymer schizophyllan. SPE-200562-MS. doi:10.2118/200562-MS.
  • Al-Araimi, S. H., A. Elshafie, and Al-Bahry, S. N. 2021. Biopolymer production by aureobasidium mangrovei Sara-138h and its potential for oil recovery enhancement. Applied Microbiology and Biotechnology 105 (1):105–17. doi:10.1007/s00253-020-11015-x.
  • Al-Ghailani, T., Y. M. Al-Wahaibi, S. J. Joshi, S. N. Al-Bahry, A. E. Elshafie, and A. S. Al-Bemani. 2021. Application of a new bio-asp for enhancement of oil recovery: mechanism study and core displacement test. Fuel 287:119432. doi:10.1016/j.fuel.2020.119432.
  • Arbaain, N., R. Roslan, I. Izwan Misnon, and M. Hasbi Ab Rahim. 2020. Rheological and thermal stability of cationic-modified diutan gum biopolymer. Sains Malaysiana 49 (10):2547–57. doi:10.17576/jsm-2020-4910-20.
  • Azarhava, H., Bajestani, M.I., Jafari, A., Vakilchap, F. and Mousavi, S.M. 2020. Production and physicochemical characterization of bacterial poly gamma- (glutamic acid) to investigate its performance on enhanced oil recovery. International Journal of Biological Macromolecules 147:1204–12. doi:10.1016/j.ijbiomac.2019.10.090.
  • Azarhava, H., A. Jafari, F. Vakilchap, and S. Mohammad Mousavi. 2021. Stability and performance of poly γ-(glutamic acid) in the presence of sulfate ion for enhanced heavy oil recovery. Journal of Petroleum Science & Engineering 196: doi:10.1016/j.petrol.2020.107688.
  • Bajestani, M. I., Kader, S., Monavarian, M., Mousavi, S.M., Jabbari, E. and Jafari, A. 2020. Material properties and cell compatibility of poly (γ-glutamic acid)-keratin hydrogels. International Journal of Biological Macromolecules 142:790–802. doi:10.1016/j.ijbiomac.2019.10.020.
  • Bajestani, M. I., S. Mohammad Mousavi, A. Jafari, and S. Abbas Shojaosadati. 2017. Biosynthesis and physicochemical characterization of a bacterial polysaccharide/polyamide blend, applied for microfluidics study in porous media. International Journal of Biological Macromolecules 96:100–10. doi:10.1016/j.ijbiomac.2016.11.048.
  • Carmen García González, M., M. Del Socorro Cely García, J. M. García, and M. Carmen Alfaro-Rodriguez. 2019. A comparison of the effect of temperature on the rheological properties of diutan and rhamsan gum aqueous solutions. Fluids 4 (1):22. doi:10.3390/fluids4010022.
  • Ciszek-Lenda, M., B. Nowak, M. Srottek, M. Walczewska, S. Gorska-Fraczek, A. Gamian, and J. Marcinkiewicz. 2013. Further studies on immunomodulatory effects of exopolysaccharide isolated from lactobacillus rhamnosus KL37C. Central European Journal of Immunology 3 (3):289–98. doi:10.5114/ceji.2013.37743.
  • Couto, M. R.,Gudiña, E.J., Ferreira, D., Teixeira, J.A. and Rodrigues, L.R. 2019. The biopolymer produced by rhizobium viscosum cect 908 is a promising agent for application in microbial enhanced oil recovery. New Biotechnology 49:144–50. doi:10.1016/j.nbt.2018.11.002.
  • Dhanarajan, G., V. Rangarajan, C. Bandi, A. Dixit, S. Das, K. Ale, and R. Sen. 2017. Biosurfactant-biopolymer driven microbial enhanced oil recovery (meor) and its optimization by an ann-ga hybrid technique. Journal of Biotechnology 256:46–56. doi:10.1016/j.jbiotec.2017.05.007.
  • Dong, H., L., Changsen, F., Xiaofei, and Nie, J. 2009. Review of Practical Experience by Polymer Flooding at Daqing. SPE Reservoir Evaluation & Engineering 12:470–76. doi:10.2118/114342-PA.
  • Druetta, P., and F. Picchioni. 2020. Surfactant-polymer interactions in a combined enhanced oil recovery flooding. Energies 13 (24):6520. doi:10.3390/en13246520.
  • El-Hoshoudy, A. N., and S. M. Desouky. 2018. Synthesis and evaluation of acryloylated starch-g-poly (acrylamide/vinylmethacrylate/1-vinyl-2-pyrrolidone) crosslinked terpolymer functionalized by dimethylphenylvinylsilane derivative as a novel polymer-flooding agent. International Journal of Biological Macromolecules 116:434–42. doi:10.1016/j.ijbiomac.2018.05.056.
  • El-Hoshoudy, A., E. G. ZAKI, and S. Elsaeed. 2019. BIOPOLYMERS composites as oil improving candidates-article review. Petroleum and Coal 61:1365–77.
  • Elshafie, A., Joshi, S., Al-Wahaibi, Y. M., Al-Bahry, S. N., Al-Bemani, A. S., Al-Hashmi, A., and Al-Mandhari, M. S. 2017. Isolation and characterization of biopolymer producing omani aureobasidium pullulans strains and Its potential applications in microbial enhanced oil recovery. SPE Oil and Gas India Conference and Exhibition 2. doi:10.2118/185326-MS.
  • Freitas, F., V. D. Alves, and R. Maria AM. 2011. Advances in bacterial exopolysaccharides: from production to biotechnological application. Trends in Biotechnology 29 (8):388–98.
  • Freitas, F., V. D. Alves, J. Pais, N. Costa, C. Oliveira, L. Mafra, L. Hilliou, R. Oliveira, and M. A. M. Reis. 2009. Characterization of an extracellular polysaccharide produced by a pseudomonas strain grown on glycerol. Bioresource Technology 100 (2):859–65. doi:10.1016/j.biortech.2008.07.002.
  • Freitas, F., V. Alves, C. Torres, M. Cruz, I. Sousa, A. Ramos, and M. Reis. 2011. Fucose-containing exopolysaccharide produced by the newly isolated Enterobacter strain A47 DSM 23139. Carbohydrate Polymers 83 (1):159–65. Freitas, Filomena, Vitor D. Alves, and Maria A.M. Reis. 2011. “Advances in Bacterial Exopolysaccharides: From Production to Biotechnological Applications.” Trends in Biotechnology 29(8): 388–98. doi:10.1016/j.carbpol.2010.07.034.
  • Gao, C. 2016. Application of a novel biopolymer to enhance oil recovery. Journal of Petroleum Exploration and Production Technology 6 (4):749–53. doi:10.1007/s13202-015-0213-7.
  • Gbadamosi, A. Patil, S., Kamal, M. S., Adewunmi, A. A., Yusuff, A. S., Agi, A., and Oseh, J. 2022. application of polymers for chemical enhanced oil recovery: A review. Polymers 14:1–39. doi:10.3390/polym14071433.
  • Guoyan, M., Y. Shen, R. Gao, X. Wang, and Z. Wu. 2017. Research and application of ultralow interfacial tension oil displacement agent. Journal of Dispersion Science and Technology 38 (10):1459–64. doi:10.1080/01932691.2016.1253480.
  • Hadiyanto, H., M. Christwardana, W. Z. Pratiwi, P. Purwanto, S. Sudarno, K. Haryani, and A. T. Hoang. 2022. Response surface optimization of microalgae microbial fuel cell (MMFC) enhanced by yeast immobilization for bioelectricity production. Chemosphere 287:132275. doi:10.1016/j.chemosphere.2021.132275.
  • Hosseini, S. J., and J. Foroozesh. 2019. Experimental study of polymer injection enhanced oil recovery in homogeneous and heterogeneous porous media using glass-type micromodels. Journal of Petroleum Exploration and Production Technology 9 (1):627–37. doi:10.1007/s13202-018-0492-x.
  • Huang, J., C. Zhong, and Y. Yang. 2020. Aggregating thermodynamic behavior of amphiphilic modified xanthan gum in aqueous solution and oil-flooding properties for enhanced oil recovery. Chemical Engineering Science 216:115476. doi:10.1016/j.ces.2020.115476.
  • Hui, L., H. Xu, H. Xu, S. Li, and P.-K. Ouyang. 2010. Biosynthetic pathway of sugar nucleotides essential for welan gum production in alcaligenes sp. CGMCC2428. Applied Microbiology and Biotechnology 86 (1):295–303. doi:10.1007/s00253-009-2298-8.
  • Ijadi Bajestani, M., S. M. Mousavi, S. B. Mousavi, A. Jafari, and S. A. Shojaosadati. 2018. Purification of extra cellular poly-γ-glutamic acid as an antibacterial agent using anion exchange chromatography. International Journal of Biological Macromolecules 113:142–49. doi:10.1016/j.ijbiomac.2018.02.082.
  • Jang A.,S. M. Kim, S. Y. Kim, S. G. Lee, and I. S. Kim. 2001. Effect of Heavy Metals (Cu, Pb, and Ni) on the Compositions of EPS in Biofilms. Water Science and Technology: A Journal of the International Association on Water Pollution Research 43 (6):41–48. doi:10.2166/wst.2001.0336.
  • Jang, H. Y., K. Zhang, B. H. Hyun Chon, and H. Jin Choi. 2015. Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution. Journal of Industrial & Engineering Chemistry 21:741–45. doi:10.1016/j.jiec.2014.04.005.
  • Jeong, M. S., D.-H. Noh, E. Hong, K. S. Lee, and T.-H. Kwon. 2019. Systematic modeling approach to selective plugging using in situ bacterial biopolymer production and its potential for microbial-enhanced oil recovery. Geomicrobiology Journal 36 (5):468–81. doi:10.1080/01490451.2019.1573277.
  • Jingchun, W., Z. Yang, and S. Fang. 2016. The screening of biopolymer bacteria in porous media. Advances in Petroleum Exploration and Development 11 (2):84–88. doi:10.3968/8568.
  • Jones, O. G., U. Lesmes, P. Dubin, and D. Julian McClements. 2010. Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin-pectin complexes. Food Hydrocolloids 24 (4):374–83. doi:10.1016/j.foodhyd.2009.11.003.
  • Joshi, S. J., and R. M. M. Abed. 2017. Biodegradation of polyacrylamide and its derivatives. Environmental Processes 4 (2):463–76. doi:10.1007/s40710-017-0224-0.
  • Jung, J. C., K. Zhang, B. Hyun Chon, and H. Jin Choi. 2013. Rheology and polymer flooding characteristics of partially hydrolyzed polyacrylamide for enhanced heavy oil recovery. Journal of Applied Polymer Science 127 (6):4833–39. doi:10.1002/app.38070.
  • Lai, N., Y. Wen, Z. Yang, J. Chen, X. Zhao, D. Wang, W. He, and Y. Chen. 2020. Polymer flooding in high-temperature and high-salinity heterogeneous reservoir by using diutan gum. Journal of Petroleum Science & Engineering 188:106902. doi:10.1016/j.petrol.2020.106902.
  • Liang, K., P. Han, Q. Chen, X. Su, and Y. Feng. 2019. Comparative study on enhancing oil recovery under high temperature and high salinity:Polysaccharides versus synthetic polymer. ACS Omega 4 (6):10620–28. doi:10.1021/acsomega.9b00717.
  • Long, X., H. Gong, M. Dong, and L. Yajun. 2015. Rheological properties and thickening mechanism of aqueous diutan gum solution: Effects of temperature and salts. Carbohydrate Polymers 132:620–29. doi:10.1016/j.carbpol.2015.06.083.
  • Long, X., G. Xu, L. Yu, H. Gong, M. Dong, and Y. Li. 2014. The displacement efficiency and rheology of welan gum for enhanced heavy oil recovery. Polymers for Advanced Technologies 25 (10):1122–29. doi:10.1002/pat.3364.
  • López-Ortega, M. A., A. I. Rodríguez-Hernández, R. M. Camacho-Ruíz, J. Córdova, M. D. R. López-Cuellar, N. Chavarría-Hernández, and Y. González-García. 2020. Physicochemical characterization and emulsifying properties of a novel exopolysaccharide produced by haloarchaeon haloferax mucosum. International Journal of Biological Macromolecules 142:152–62. doi:10.1016/j.ijbiomac.2019.09.087.
  • Najafi-Marghmaleki, A., S. Kord, A. Hashemi, and H. Motamedi. 2018. Experimental investigation of efficiency of meor process in a carbonate oil reservoir using alcaligenes faecalis: impact of interfacial tension reduction and wettability alteration mechanisms. Fuel 232:27–35. doi:10.1016/j.fuel.2018.05.117.
  • Nouha, K. 2016. Characterization of extracellular polymeric substances (eps) produced by cloacibacterium normanense isolated from wastewater sludge for sludge settling and dewatering. Journal of Civil & Environmental Engineering 5 (06). doi:10.4172/2165-784X.1000191.
  • Orodu, K. B., R. O. Afolabi, T. D. Oluwasijuwomi, and O. D. Orodu. 2019. Effect of aluminum oxide nanoparticles on the rheology and stability of a biopolymer for enhanced oil recovery. Journal of Molecular Liquids 288. doi:10.1016/j.molliq.2019.04.141.
  • Ortega-Morales, B. O., J. L. Santiago-García, M. J. Chan-Bacab, X. Moppert, E. Miranda-Tello, M. L. Fardeau, J. C. Carrero, P. Bartolo-Pérez, A. Valadéz-González, and J. Guezennec. 2007. Characterization of extracellular polymers synthesized by tropical intertidal biofilm bacteria. Journal of Applied Microbiology 102 (1):254–64. doi:10.1111/j.1365-2672.2006.03085.x.
  • Pogaku, R., N. H. Mohd Fuat, S. Sakar, Z. W. Cha, N. Musa, D. N. A. Awang Tajudin, and L. O. Morris. 2018. Polymer flooding and its combinations with other chemical injection methods in enhanced oil recovery. Polymer Bulletin 75 (4):1753–74. doi:10.1007/s00289-017-2106-z.
  • Pu, W., C. Shen, B. Wei, Y. Yang, and Y. Li. 2018. A comprehensive review of polysaccharide biopolymers for enhanced oil recovery (eor) from flask to field. Journal of Industrial & Engineering Chemistry 61:1–11. doi:10.1016/j.jiec.2017.12.034.
  • Qinzhi, L., W. Pu, B. Wei, F. Jin, and K. Li. 2017. Static adsorption and dynamic retention of an anti-salinity polymer in low permeability sandstone core. Journal of Applied Polymer Science 134 (8). doi:10.1002/app.44487.
  • Quadri S., Jiran, L., Shoaib, M., Hashmet, M. R., AlSumaiti, A. M., and Alhassan, S. M. 2015. Application of biopolymer to improve oil recovery in high temperature high salinity carbonate reservoirs. Abu Dhabi International Petroleum Exhibition and Conference, SPE-177915–MS. doi:10.2118/177915-MS.
  • Quinto, C. A., P. Mohindra, S. Tong, and G. Bao. 2015. Multifunctional Superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7 (29):12728–36. doi:10.1039/C5NR02718G.
  • Rahul, S., R. V. S. Uppaluri, and P. Tiwari. 2019. Impact of natural surfactant (reetha), polymer (xanthan gum), and silica nanoparticles to enhance heavy crude oil recovery. Energy & Fuels 33 (5):4225–36. doi:10.1021/acs.energyfuels.9b00790.
  • Rana, S., and L. Sheo Bachan Upadhyay. 2020. Microbial exopolysaccharides: synthesis pathways, types and their commercial applications. International Journal of Biological Macromolecules 157:577–83. doi:10.1016/j.ijbiomac.2020.04.084.
  • Riaz, T., M. Waheed Iqbal, B. Jiang, and J. Chen. 2021. A review of the enzymatic, physical, and chemical modification techniques of xanthan gum. International Journal of Biological Macromolecules 186:472–89. doi:10.1016/j.ijbiomac.2021.06.196.
  • Said, M., B. Haq, D. Al Shehri, M. M. Rahman, N. S. Muhammed, and M. Mahmoud. 2021. Modification of xanthan gum for a high-temperature and high-salinity reservoir. Polymers 13 (23):4212–13. doi:10.3390/polym13234212.
  • Sancet, G. F., and M. Goldman. 2018. SPE-190408-MS molecular structure characterization and interaction of a polymer blend of xanthan gum-polyacrylamide to improve mobility-control on a mature polymer flood.
  • Seesuriyachan, P. 2012. Statistical modeling and optimization for exopolysaccharide production by lactobacillus confusus in submerged fermentation under high salinity stress. Food Science & Biotechnology 21 (6):1647–54. doi:10.1007/s10068-012-0219-6.
  • Sheng, J. J., B. Leonhardt, and N. Azri. 2015. Status of Polymer-Flooding Technology. Journal of Canadian Petroleum Technology 54 (2):116–26. doi:10.2118/174541-PA.
  • Sofia, G. B., and A. Djamel. 2016. A Rheological study of xanthan polymer for enhanced oil recovery. Journal of Macromolecular Science, Part B: Physics 55 (8):793–809. doi:10.1080/00222348.2016.1207544.
  • Squillaci, G., R. Finamore, P. Diana, O. F. Restaino, C. Schiraldi, S. Arbucci, E. Ionata, F. La Cara, and A. Morana. 2016. Production and properties of an exopolysaccharide synthesized by the extreme halophilic archaeon haloterrigena turkmenica. Applied Microbiology and Biotechnology 100 (2):613–23. doi:10.1007/s00253-015-6991-5.
  • Sun, S., Y. Luo, S. Cao, W. Li, Z. Zhang, L. Jiang, H. Dong, L. Yu, and W.-M. Wu. 2013. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery. Bioresource Technology 144:44–49. doi:10.1016/j.biortech.2013.06.098.
  • Suthar, H., K. Hingurao, A. Desai, and A. Nerurkar. 2009, Oct. Selective plugging strategy-based microbial-enhanced oil recovery using Bacillus licheniformis TT33. Journal of Microbiology and Biotechnology 19 (10):1230–37. PMID: 19884785.
  • Suwa, K., K. Yamamoto, M. Akashi, K. Takano, N. Tanaka, and S. Kunugi. 1998. Effects of salt on the temperature and pressure responsive properties of poly(N-vinylisobutyramide) aqueous solutions. Colloid and Polymer Science 276 (6):529–33. doi:10.1007/s003960050276.
  • Tackie-Otoo, B. N., M. Abdalla Ayoub Mohammed, N. Yekeen, and B. Mamo Negash. 2020. Alternative chemical agents for alkalis, surfactants and polymers for enhanced oil recovery: research trend and prospects. Journal of Petroleum Science & Engineering 187: doi:10.1016/j.petrol.2019.106828.
  • Wang, D., Dong, H., C. Lv, X. Fu, and J. Nie. 2009. Review of Practical experience by polymer flooding at daqing. SPE Reservoir Evaluation & Engineering 12:470–476. doi:10.2118/114342-PA.
  • Wang, J., B. Tian, Y. Bao, C. Qian, Y. Yang, T. Niu, and B. Xin. 2018. Functional exploration of extracellular polymeric substances (eps) in the bioleaching of obsolete electric vehicle linixcoymn1-x-yo2 li-ion batteries. Journal of Hazardous Materials 354:250–57. doi:10.1016/j.jhazmat.2018.05.009.
  • Wang, T., L. Yu, J. Xiu, Y. Ma, W. Lin, T. Ma, X. Wang, and L. Wang. 2018. A mathematical model for microbial enhanced oil recovery using biopolymer-producing microorganism. Fuel 216:589–95. doi:10.1016/j.fuel.2017.12.058.
  • Wei, X., Z. Li, W. Jin, P. Li, Y. Li, H. Liang, Y. Li, and B. Li. 2016. Structural and rheological properties of xanthan gum/lysozyme system induced by in situ acidification. Food Research International 90:85–90. doi:10.1016/j.foodres.2016.10.039.
  • Wei, B., L. Romero-Zerón, and D. Rodrigue. 2014. Mechanical properties and flow behavior of polymers for enhanced oil recovery. Journal of Macromolecular Science, Part B: Physics 53 (4):625–44. doi:10.1080/00222348.2013.857546.
  • Xia, W., X. Dong, Y. Zhang, and M. Ting. 2018. Biopolymer from marine athelia and its application on heavy oil recovery in heterogeneous reservoir. Carbohydrate Polymers 195:53–62. doi:10.1016/j.carbpol.2018.04.061.
  • Yajun, L., L. Xu, H. Gong, B. Ding, M. Dong, and Y. Li. 2017. A microbial exopolysaccharide produced by sphingomonas species for enhanced heavy oil recovery at high temperature and high salinity. Energy & Fuels 31 (4):3960–69. doi:10.1021/acs.energyfuels.6b02923.
  • Yang, D.-P., F. Gao, D.-X. Cui, and M. Yang. 2009. Microwave rapid synthesis of nanoporous Fe3O4 magnetic microspheres. Current Nanoscience 5 (4):485–88. doi:10.2174/157341309789378050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.