107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal performance enhancement of energy storage system using spiral-wired tube heat exchanger

ORCID Icon &
Pages 7280-7293 | Received 30 Aug 2022, Accepted 21 May 2023, Published online: 05 Jun 2023

References

  • Abdulateef, A. M., J. Abdulateef, S. Mat, K. Sopian, B. Elhub, and M. Abdullah Mussa. 2018. Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins. International Communications in Heat and Mass Transfer 90:73–84. doi:10.1016/j.icheatmasstransfer.2017.10.003.
  • Afsharpanah1, F., K. Pakzad, S. Soheil Mousavi Ajarostaghi1, S. Poncet, and K. Sedighi1. 2022. Accelerating the charging process in a shell and dual coil ice storage unit equipped with connecting plates. Int J Energy Res 46 (6):7460–78. doi:10.1002/er.7654.
  • Afsharpanah, F., M. Izadi, F. A. Hamedani, S. Soheil, M. Ajarostaghi, and W. Yaïci. 2022. Solidification of nano- enhanced PCM-porous composites in a cylindrical cold thermal energy storage enclosure. Case Studies in Thermal Engineering 39:39–102421. doi:10.1016/j.csite.2022.102421.
  • Afsharpanah, F., K. Pakzad, S. Soheil Mousavi Ajarostaghi, and M. Arıcı. 2022. Assessment of the charging performance in a cold thermal energy storage container with two rows of serpentine tubes and extended surfaces. Journal of Energy Storage 51:104464. doi:10.1016/j.est.2022.104464.
  • Afsharpanah, F., S. Soheil Mousavi Ajarostaghi, and M. Arıcı. 2022. Parametric study of phase change time reduction in a shell-and-tube ice storage system with anchor-type fin design. International Communications in Heat and Mass Transfer 137:106281. doi:10.1016/j.icheatmasstransfer.2022.106281.
  • Agyenim, F., P. Eames, and M. Smyth. 2009. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Solar Energy 83 (9):1509–20. doi:10.1016/j.solener.2009.04.007.
  • Al-Abidi, A., S. B. Mat, K. Sopian, M. Y. Sulaiman, and A. T. Mohammed. 2013. CFD application for latent heat thermal energy storage: A review. Renewable and Sustainable Energy Review 20:353–63. doi:10.1016/j.rser.2012.11.079.
  • Alshaer, W. G., S. A. Nada, M. A. Rady, E. P. Barrio, and A. Sommier. 2015. Thermal management of electronic devices using carbon foam and PCM/nano-composite. International Journal of Thermal Sciences 89:79–86. doi:10.1016/j.ijthermalsci.2014.10.012.
  • Arena, S., E. Casti, J. Gasia, L. F. Cabeza, and G. Cau. 2017. Numerical simulation of a finned-tube LHTES system: Influence of the mushy zone constant on the phase change behavior. Energy Procedia 126:517–24. doi:10.1016/j.egypro.2017.08.237.
  • Buonomo, B., D. Ercole, O. Manca, and S. Nardini. 2016. Thermal behaviors of latent thermal energy storage system with PCM and aluminum foam. International Journal of Heat and Technology 34 (S2):S359–S64. doi:10.18280/ijht.34S224.
  • Dzhonova-Atansova, D. B., A. G. Georgiev, and R. K. Popov. 2016. Numerical study of heat transfer in macro-encapsulated phase change material for thermal energy storage. Bulgarian Chemical Communications 48 (48):189–94.
  • Esen, M. 2000. Thermal performance of a solar-aided latent heat store used for space heating by heat pump. Solar Energy 69 (1):15–25. doi:10.1016/S0038-092X(00)00015-3.
  • Esen, M., A. Durmus, and A. Durmus. 1998. Geometric design of solar-aided latent heat store depending on various parameters and phase change materials. Solar Energy 62 (1):19–28. doi:10.1016/S0038-092X(97)00104-7.
  • Fluent INC 2019; Fluent User Guide190 .
  • Hasan, H. A., and I. Y. Hussain. 2018a. Simulation and testing of thermal performance enhancement for cascade thermal energy storage system by using metal foam. International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS 18:05. doi:10.1088/1757-899X/433/1/012043.
  • Hasan, H. A., and I. Y. Hussain. 2018b. Theoretical formulation and numerical simulation of thermal performance enhancements for cascade thermal energy storage systems. In IOP Conference Series: Materials Science and Engineering 433(1):012043. IOP Publishing. doi:10.1088/1757-899X/433/1/012043.
  • Huang, B., S. Yang, H. Enyi, L. Xiuxiu, J. Wang, and P. Lund. 2021. Theoretical study on melting of phase change material by natural convection. Case Studies in Thermal Engineering 28:28–101620. doi:10.1016/j.csite.2021.101620.
  • Hussain, I. Y., and M. Abdulkareem Jasim. 2017. Thermal performance enhancement of phase change materials (pcms) by using metal foams. Al-Nahrain Journal for Engineering Sciences (NJES) 20 (1):235–49.
  • Jalil, J. M., and S. M. Salih. 2020. Analysis of thermal and insulation performance of double glazed window doped with paraffin wax. Engineering and Technology Journal 38 (3):383–93. doi:10.30684/etj.v38i3A.448.
  • Jegadheeswaran, S., and S. D. Pohekar. 2009. Performance enhancement in latent heat thermal storage system: A review. Renew Sustain Energy Rev 13 (9):2225–44. doi:10.1016/j.rser.2009.06.024.
  • Jerol, S., (2017) “Numerical Investigation of a Phase Change Materials (PCM) heat exchanger”, M.SC. Thesis, Norwegian University of Science and Technology.
  • Medrano, M., M. O. O. Yilmaz, M. Nogués, I. Martorell, J. Roca, and L. F. Cabeza. 2009. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Appl Energy 86 (10):2047–55. doi:10.1016/j.apenergy.2009.01.014.
  • Patankar, S. V. 1980. “Numerical heat transfer and fluid flow”. Tylor and Francis.
  • Rathod, M. K., and J. Banerjee. 2011. Numerical investigation on latent heat storage unit of different configurations. Int J Mech Aerospace, Ind Mechatron Manuf Eng 5:652–557.
  • Rubitherm Technologies GmBH, Germany (http://www.rubitherm.de).
  • Sundaram Anandan, S., and J. Sundarababu. 2021. A comprehensive review on mobilized thermal energy storage, energy sources, part a: recovery. Utilization, and Environmental Effects. doi:10.1080/15567036.2021.1942331.
  • Valan Arasu, A., A. P. SASMITO, and A. S. Mujumidar. 2013. Numerical performance study of paraffin wax dispersed with alumina in concentric pipe latent heat storage system. Thermal Science 17 (2):419–30. doi:10.2298/TSCI110417004A.
  • Voller, V. R., and C. Prakash. 1987. A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems. International Heat and Mass Transfer 30 (8):1709–19. doi:10.1016/0017-9310(87)90317-6.
  • Wang, P., D. Li, Y. Huang, X. Zheng, Z. Peng, and Y. Ding. 2015. Thermal energy charging behavior of a heat exchange device with a zigzag plate configuration containing multi-phase-change-material J.Appl. Thermal Eng 142:328–36. doi:10.1016/j.apenergy.2014.12.050.
  • Youssef, W., Y. T. Ge, and S. A. Tassou. 2018. CFD modelling development and experimental validation of a phase change material (PCM) heat exchanger with spiral-wired tubes. Energy Conversion & Management 157:498–510. doi:10.1016/j.enconman.2017.12.036.
  • Zhang, P., Z. Menga, H. Zhua, Y. Wangb, and S. Pengb. 2015a. Experimental and numerical study of heat transfer characteristics of a paraffin/metal foam composite PCM. Applied Energy 75:3091–97. doi:10.1016/j.egypro.2015.07.637.
  • Zhang, P., Z. Menga, H. Zhua, Y. Wangb, and S. Pengb. 2015b. Experimental and numerical study of heat transfer characteristics of a paraffin/metal foam composite PCM. Applied Energy 75:3091–97. doi:10.1016/j.egypro.2015.07.637.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.