119
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermoeconomic and life cycle assessments for a trigeneration system: A case study

, , ORCID Icon & ORCID Icon
Pages 7529-7543 | Received 18 Oct 2022, Accepted 29 May 2023, Published online: 11 Jun 2023

References

  • AERZEN. 2022. Biogas solutions by AERZEN. https://www.aerzen.com/pt-br/aplicacoes/biogasbiometano.html.
  • Anaya-Reza, O., M. F. Altamirano-Corona, G. Castelán-Rodríguez, S. A. García-González, and A. Durán-Moreno. 2022. Techno-economic and environmental assessment for biomethane production and cogeneration scenarios from OFMSW in Mexico. Waste and Biomass Valorization 13:1059–75. doi:10.1007/s12649-021-01592-x.
  • Barsallo, N. R., Á. I. Ochoa, L. A. Corredor, M. A. Sierra, and I. Ochoa. 2018. Thermoeconomic analysis of biomethane large scale production for cities from landfill and sewage biogas. Renewable Energy and Power Quality Journal 1:357–61. doi:10.24084/repqj16.313.
  • BRASIL, B. C. DO Taxas de juros básicas – Histórico Available at: https://www.bcb.gov.br/controleinflacao/historicotaxasjuros
  • Bugaje, A. A. B., M. O. Dioha, M. C. Abraham-Dukuma, and M. Wakil. 2022. Rethinking the position of natural gas in a low-carbon energy transition. Energy Research and Social Science 90:102604. doi:10.1016/j.erss.2022.102604.
  • Caglayan, H., and H. Caliskan. 2022. Life cycle assessment based exergoenvironmental analysis of a cogeneration system used for ceramic factories. Sustainable Energy Technologies and Assessments 52:102078. doi:10.1016/j.seta.2022.102078.
  • Cappiello, F. L., L. Cimmino, M. Napolitano, and M. Vicidomini. 2022. Thermoeconomic analysis of biomethane production plants: a dynamic approach. Sustainability 14 (10):5744. doi:10.3390/su14105744.
  • Carvalho, M., and D. Delgado. 2017. Potential of photovoltaic solar energy to reduce the carbon footprint of the Brazilian electricity matrix. LALCA: Revista Latino-Americana em Avaliação do Ciclo de Vida 1 (1):64–85. doi:10.18225/lalca.v1i1.3779.
  • Chen, Y., Z. Xu, J. Wang, P. D. Lund, Y. Han, and T. Cheng. 2022. Multi-objective optimization of an integrated energy system against energy, supply-demand matching and exergo-environmental cost over the whole life-cycle. Energy Conversion and Management 254:115203. doi:10.1016/j.enconman.2021.115203.
  • Commercial Chamber of Electricity (CCEE). 2021. CCEE: Average PLD (Difference Liquidation Price) of 2021 should be R$ 282,48/ MWh. [In Portuguese]. https://www.canalenergia.com.br/noticias/53192522/ccee-pld-medio-de-2021-deve-ficar-em-r-28248-mwh#:~:text=A%20proje%C3%A7%C3%A3o%20m%C3%A9dia%20de%20PLD,%24%2082%2C21%2F%20MWh.
  • Companhia Nacional de Abastecimento; (CONAB) Acompanhamento da Safra Brasileira - Cana de açúcar - V.8 - SAFRA 2021/22 - N.3 - Terceiro levantamento - Novembro 2021. 2021, 8, 63.
  • Companhia Pernambuca de Gás, (Copergás) Tabela de Tarifas. 2023. Available at: https://novo.copergas.com.br/informacoes/tarifas/
  • Companhia Pernambuca de Saneamento, (COMPESA) Tarifa. 2023. Available at: https://servicos.compesa.com.br/?s=tarifa
  • Danielle Bandeira de, M. D., C. Monica, C. J. Luiz Moreira, and C. Ricardo. 2018. Analysis of biomass-fired boilers in a polygeneration system for a hospital. Frontiers of Management Research 2 (1). doi:10.22606/fmr.2018.21001.
  • DENOX. 2022. Heat exchangers. [In Portuguese]. Available at: https://www.denoxtrocadores.com.br/fabrica-trocador-calor
  • ECAL. 2022. Boilers and Heaters. [In Portuguese]. Available at: https://www.ecal.com.br/index.
  • Ecoinvent database. 2019. www.ecoinvent.org.
  • Elyasi, S. N., S. Rafiee, S. S. Mohtasebi, P. Tsapekos, I. Angelidaki, H. Liu, and B. Khoshnevisan. 2021. An integer superstructure model to find a sustainable biorefinery platform for valorizing household waste to bioenergy, microbial protein, and biochemicals. Journal of Cleaner Production 278:123986. doi:10.1016/j.jclepro.2020.123986.
  • Farzad, S., M. A. Mandegari, M. Guo, K. F. Haigh, N. Shah, and J. F. Görgens. 2017. Multi-product biorefineries from lignocelluloses: A pathway to revitalisation of the sugar industry? Biotechnology for Biofuels 10 (1):1–24. doi:10.1186/s13068-017-0761-9.
  • Ferreira, L. R. A., R. B. Otto, F. P. Silva, S. N. M. De Souza, S. S. De Souza, and O. H. Ando Junior. 2018. Review of the energy potential of the residual biomass for the distributed generation in Brazil. Renewable and Sustainable Energy Reviews 94:440–55. doi:10.1016/j.rser.2018.06.034.
  • Fuel Cell Energy. 2022. Decarbonize power Produce hydrogen. Available at: https://www.fuelcellenergy.com/
  • Ghorbani, B., A. Ebrahimi, and F. Skandarzadeh. 2022. An innovative integrated CCHP system with water scrubbing‐based biogas upgrading unit and molten carbonate fuel cell. Energy Science and Engineering 10 (4):1096–119. doi:10.1002/ese3.1106.
  • Goedkoop, M., and R. Spriensma. 2001. PRé Consultants. https://pre-sustainability.com/legacy/download/EI99_annexe_v3.pdf.
  • Golmakani, A., S. Ali Nabavi, B. Wadi, and V. Manovic. 2022. Advances, challenges, and perspectives of biogas cleaning, upgrading, and utilisation. Fuel 317:123085. doi:10.1016/j.fuel.2021.123085.
  • Guinée, J. B., P. M. Alessandra Zamagni, and T. E. A. T. Rydberg. 2015. Life cycle assessment: past, present, and future. JP Journal of Heat and Mass Transfer 11:29–42. doi:10.17654/JPHMTFeb2015_029_042.
  • Hijazi, O., S. Munro, B. Zerhusen, and M. Effenberger. 2016. Review of life cycle assessment for biogas production in Europe. Renewable and Sustainable Energy Reviews 54:1291–300. doi:10.1016/j.rser.2015.10.013.
  • IPCC Climate Change. 2021. The physical science basis WGI. 34.
  • (ISO), I.O. for S. ISO 14040. Environmental management - Life cycle assessment - Principles and framework 2006.
  • (ISO), I.O. for S. ISO 14044. Environmental management - Life cycle assessment - Requirements and guidelines 2006.
  • Klein, S. A. 2016. Engineering equation solver. F-Chart Software, Box .
  • Lozano, M. A., and A. Valero. 1993. Theory of the exergetic cost. Energy 18 (9):939–60. doi:10.1016/0360-5442(93)90006-Y.
  • Lyng, K. A., and A. Brekke. 2019. Environmental life cycle assessment of biogas as a fuel for transport compared with alternative fuels. Energies 12 (3):532. doi:10.3390/en12030532.
  • Marques, A. S., M. Carvalho, A. A. V. Ochoa, R. Abrahão, and C. A. C. Santos. 2021. Life cycle assessment and comparative exergoenvironmental evaluation of a micro-trigeneration system. Energy 216:119310. doi:10.1016/j.energy.2020.119310.
  • Mersen. 2022. Columns, reactors, and pressure vessels. Available at: https://www.mersen.com.br/pt-br/produtos/equipamento-de-anticorrosao/colunas-reatores-e-vasos-de-pressao
  • Mondal, P., S. Samanta, S. Arafat Zaman, and S. Ghosh. 2021. Municipal solid waste fired combined cycle plant: Techno-economic performance optimization using response surface methodology. Energy Conversion and Management 237:114133. doi:10.1016/j.enconman.2021.114133.
  • Nunes Ferraz Junior, A. D., C. Etchebehere, D. Perecin, S. Teixeira, and J. Woods. 2022. Advancing anaerobic digestion of sugarcane vinasse: Current development, struggles and future trends on production and end-uses of biogas in Brazil. Renewable and Sustainable Energy Reviews 157:112045. doi:10.1016/j.rser.2021.112045.
  • Nunes, L. J. R., L. M. E. F. Loureiro, L. C. R. Sá, and H. F. C. Silva. 2020. Sugarcane industry waste recovery: A case study using thermochemical conversion technologies to increase sustainability. Applied Sciences 10 (18):6481. doi:10.3390/APP10186481.
  • PRé Sustainability. 2022. SimaPro software. www.simapro.com.
  • Ren F, Wei Z, and Zhai X. 2021. Multi-objective optimization and evaluation of hybrid CCHP systems for different building types. Energy 215:119096. doi:10.1016/j.energy.2020.119096.
  • Ruhrpumpen Brasil. 2022. Pumping solutions. [In Portuguese]. Available at: https://www.ruhrpumpen.com/pt/sobre-a-rp/instalacoes/brasil
  • Sartori da Silva, F., and J. A. Matelli. 2019. Exergoeconomic analysis and determination of power cost in MCFC – steam turbine combined cycle. International Journal of Hydrogen Energy 44 (33):18293–307. doi:10.1016/j.ijhydene.2019.05.156.
  • Seyam S, Dincer I, and Agelin-Chaab M. 2021. Exergetic, exergoeconomic and exergoenvironmental analyses of a hybrid combined locomotive powering system for rail transportation. Energy Conversion and Management 245:114619. doi:10.1016/j.enconman.2021.114619.
  • Siemens Energy. 2022. [In Portuguese]. Available at: https://www.siemens-energy.com/br/pt/empresa/sobre-nos.html
  • Soleymani, E., S. Ghavami Gargari, and H. Ghaebi. 2021. Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC. Renew Energy 177:495–518. doi:10.1016/j.renene.2021.05.103.
  • Syahputra, R., O. I. Pambudi, F. Mujaahid, and I. Soesanti. 2020. A study of sugarcane waste for biomass energy in the supply of electrical energy. Journal of Electrical Technology UMY 4:28–38.
  • Tadeu Fuess, L., M. Zaiat, and C. Augusto Oller Do Nascimento. 2022. Can biogas-producing sugarcane biorefineries techno-economically outperform conventional ethanol production? Deciphering the way towards maximum profitability. Energy Conversion and Management 254:115206. doi:10.1016/j.enconman.2022.115206.
  • Thiruselvi, D., P. S. Kumar, M. A. Kumar, C. H. Lay, S. Aathika, Y. Mani, D. Jagadiswary, A. Dhanasekaran, P. Shanmugam, S. Sivanesan, et al. 2021. A critical review on global trends in biogas scenario with its up-gradation techniques for fuel cell and future perspectives. International Journal of Hydrogen Energy. 46(31):16734–50. doi:10.1016/j.ijhydene.2020.10.023.
  • Valero A, Lozano M A, Serra L, Tsatsaronis G, Pisa J, Frangopoulos C, and von Spakovsky M R. 1994. CGAM problem: Definition and conventional solution. Energy 19(3):279–286. doi:10.1016/0360-5442(94)90112-0.
  • Walter Klöpffer, B. G., W. Klöpffer, and B. Grahl. 2014. Life Cycle Assessment (LCA): A guide to best practice. 1°. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/9783527655625.
  • Yang, K., N. Zhu, Y. Ding, C. Chang, and T. Yuan. 2018. Thermoeconomic analysis of an integrated combined cooling heating and power system with biomass gasification. Energy Conversion and Management 171:671–82. doi:10.1016/j.enconman.2018.05.089.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.