170
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on the reliability of thermal analysis techniques in the in-situ combustion of heavy oil

, ORCID Icon, , , , , , , & show all
Pages 7346-7362 | Received 17 Jan 2023, Accepted 11 May 2023, Published online: 06 Jun 2023

References

  • Ariskina, K. A., C. Yuan, M. Abaas, D. A. Emelianov, N. Rodionov, and M. A. Varfolomeev. 2020. Catalytic effect of clay rocks as natural catalysts on the combustion of heavy oil. Applied Clay Science 193:105662. doi:10.1016/j.clay.2020.105662.
  • Bala, P., B. K. Samantaray, and S. K. Srivastava. 2000. Dehydration transformation in Ca-montmorillonite. Bulletin of Materials Science 23 (1):61–67. doi:10.1007/BF02708614.
  • Caplanne, S., and I. Laurion. 2008. Effect of chromophoric dissolved organic matter on epilimnetic stratification in lakes. Aquatic Sciences 70 (2):123–33. doi:10.1007/s00027-007-7006-0.
  • Chen, H., X. Liu, N. Jia, X. Tian, I. Duncan, R. Yang, and S. Yang. 2020. The impact of the oil character and quartz sands on the thermal behavior and kinetics of crude oil. Energy 210:118573. doi:10.1016/j.energy.2020.118573.
  • Chrissafis, K. 2009. Kinetics of thermal degradation of polymers. Journal of Thermal Analysis and Calorimetry 95 (1):273–83. doi:10.1007/s10973-008-9041-z.
  • Cinar, M., L. M. Castanier, and A. R. Kovscek. 2011. Combustion kinetics of heavy oils in porous media. Energy & Fuels 25 (10):4438–51. doi:10.1021/ef200680t.
  • Haftka, J. J. H., H. A. J. Govers, and J. R. Parsons. 2010. Influence of temperature and origin of dissolved organic matter on the partitioning behavior of polycyclic aromatic hydrocarbons. Environmental Science and Pollution Research 17 (5):1070–79. doi:10.1007/s11356-009-0263-9.
  • Jia, H., J.-Z. Zhao, W.-F. Pu, J. Zhao, and X.-Y. Kuang. 2012. Thermal study on light crude oil for application of High-Pressure Air Injection (HPAI) process by TG/DTG and DTAtests. Energy & Fuels 26 (3):1575–84. doi:10.1021/ef201770t.
  • Khalil, M., B. M. Jan, C. W. Tong, and M. A. Berawi. 2017. Advanced nanomaterials in oil and gas industry: Design, application and challenges. Applied Energy 191:287–310. doi:10.1016/j.apenergy.2017.01.074.
  • Khansari, Z., I. D. Gates, and N. Mahinpey. 2012. Detailed study of low-temperature oxidation of an Alaska heavy oil. Energy & Fuels 26 (3):1592–97. doi:10.1021/ef201828p.
  • Khansari, Z., I. D. Gates, and N. Mahinpey. 2014. Low-temperature oxidation of Lloydminster heavy oil: Kinetic study and product sequence estimation. Fuel 115:534–38. doi:10.1016/j.fuel.2013.07.071.
  • Khelkhal, M. A., A. A. Eskin, and A. V. Vakhin. 2019. Kinetic study on heavy oil oxidation by copper tallates. Energy & Fuels 33 (12):12690–95. doi:10.1021/acs.energyfuels.9b03185.
  • Kirschbaum, M. U. F. 2006. The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biology and Biochemistry 38 (9):2510–18. doi:10.1016/j.soilbio.2006.01.030.
  • Kok, M. 2006. Effect of clay on crude oil combustion by thermal analysis techniques. Journal of Thermal Analysis and Calorimetry 84 (2):361–66. doi:10.1007/s10973-005-7153-2.
  • Kok, M. V. 2011. Characterization of medium and heavy crude oils using thermal analysis techniques. Fuel Processing Technology 92 (5):1026–31. doi:10.1016/j.fuproc.2010.12.027.
  • Kök, M. V., and K. G. Gul. 2013. Combustion characteristics and kinetic analysis of Turkish crude oils and their SARA fractions by DSC. Journal of Thermal Analysis and Calorimetry 114 (1):269–75. doi:10.1007/s10973-013-3256-3.
  • Kok, M. V., and A. S. Gundogar. 2010. Effect of different clay concentrations on crude oil combustion kinetics by thermogravimetry. Journal of Thermal Analysis and Calorimetry 99 (3):779–83. doi:10.1007/s10973-009-0377-9.
  • Kök, M. V., M. A. Varfolomeev, and D. K. Nurgaliev. 2021. TGA and DSC investigation of different clay mineral effects on the combustion behavior and kinetics of crude oil from Kazan Region, Russia. Journal of Petroleum Science and Engineering 200:108364. doi:10.1016/j.petrol.2021.108364.
  • Kovscek, A. R. R., L. M. M. Castanier, and M. G. G. Gerritsen. 2013. Improved predictability of in-situ-combustion enhanced oil recovery. SPE Reservoir Evaluation & Engineering 16 (2):172–82. doi:10.2118/165577-PA.
  • Kozlowski, M. L., A. Punase, H. A. Nasr-El-Din, and B. Hascakir 2015, November. The catalytic effect of clay on in-situ combustion performance. In SPE Latin American and Caribbean petroleum engineering conference. OnePetro. doi: 10.2118/177166-MS
  • Li, Y.-B., X. Lin, C. Luo, Z.-M. Hu, H.-F. Jia, J.-T. Chen, and W.-F. Pu. 2021. A comprehensive investigation of the influence of clay minerals on oxidized and pyrolyzed cokes in in situ combustion for heavy oil reservoirs. Fuel 302:121168. doi:10.1016/j.fuel.2021.121168.
  • Li, Y.-B., C. Luo, X. Lin, K. Li, Z.-R. Xiao, Z.-Q. Wang, and W.-F. Pu. 2020. Characteristics and Properties of Coke Formed by Low-Temperature Oxidation and Thermal Pyrolysis during in situ Combustion. Industrial & Engineering Chemistry Research 59 (5):2171–80. doi:10.1021/acs.iecr.9b05635.
  • Liu, P., W. Pu, and J. Ni. 2016. Catalytic effect analysis of clay minerals on low-temperature oxidation of crude oil through combined thermal analysis methods. Petroleum Science and Technology 34 (4):343–49. doi:10.1080/10916466.2015.1136945.
  • Mocioiu, O. C., M. Zaharescu, G. Jitianu, and P. Budrugeac. 2006. Kinetic parameters determination in non-isothermal conditions for the crystallisationof a silica-soda-lead glass. Journal of Thermal Analysis and Calorimetry 86 (2):429–36. doi:10.1007/s10973-005-7273-8.
  • Moinet, G. Y. K., M. Moinet, J. E. Hunt, C. Rumpel, A. Chabbi, and P. Millard. 2020. Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Science of the Total Environment 704:135460. doi:10.1016/j.scitotenv.2019.135460.
  • Pu, W., S. Pang, and H. Jia. 2015. Using DSC/TG/DTA techniques to re-evaluate the effect of clays on crude oil oxidation kinetics. Journal of Petroleum Science and Engineering 134:123–30. doi:10.1016/j.petrol.2015.07.014.
  • Pu, W., S. Zhao, J. Pan, R. Wang, L. Chen, N. Kan, and L. Wang. 2018. Comparative analysis of quartz sand and detritus effects on thermal behavior and kinetics of heavy crude oil. Thermochimica Acta 667:153–59. doi:10.1016/j.tca.2018.07.017.
  • Voga, G. P., M. G. Coelho, G. M. de Lima, and J. C. Belchior. 2011. Experimental and theoretical studies of the thermal behavior of titanium Dioxide−SnO2 based composites. The Journal of Physical Chemistry A 115 (13):2719–26. doi:10.1021/jp111369f.
  • Vossoughi, S., G. P. Willhite, W. P. Kritikos, I. M. Guvenir, and Y. El Shoubary. 1982. Automation of an in-Situ Combustion Tube and Study of the Effect of Clay on the in-Situ Combustion Process. Society of Petroleum Engineers Journal 22 (4):493–502. doi:10.2118/10320-PA.
  • Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 520 (1):1–19. doi:10.1016/j.tca.2011.03.034.
  • Walse, C., B. Berg, and H. Sverdrup. 1998. Review and synthesis of experimental data on organic matter decomposition with respect to the effect of temperature, moisture, and acidity. Environmental Reviews 6 (1):25–40. doi:10.1139/a98-001.
  • Yuan, C.-D., W.-F. Pu, F.-Y. Jin, J.-J. Zhang, Q.-N. Zhao, D. Li, and Y.-F. Chen, Y.-F. Chen. 2015. Characterizing the Fuel Deposition Process of Crude Oil Oxidation in Air Injection. Energy & Fuels 29 (11):7622–29. doi:https://doi.org/10.1021/acs.energyfuels.5b01493.
  • Yuan, C., D. A. Emelianov, and M. A. Varfolomeev. 2018. Oxidation behavior and kinetics of light, medium, and heavy crude oils characterized by thermogravimetry coupled with Fourier transform infrared spectroscopy. Energy & Fuels 32 (4):5571–80. doi:10.1021/acs.energyfuels.8b00428.
  • Yuan, C., K. Sadikov, M. Varfolomeev, R. Khaliullin, W. Pu, A. Al-Muntaser, and S. Saeed Mehrabi-Kalajahi. 2020. Low-temperature combustion behavior of crude oils in porous media under air flow condition for in-situ combustion (ISC) process. Fuel 259:116293. doi:10.1016/j.fuel.2019.116293.
  • Yuan, P., D. Q. Wu, H. P. He, and Z. Y. Lin. 2004. The hydroxyl species and acid sites on diatomite surface: A combined IR and Raman study. Applied Surface Science 227 (1):30–39. doi:10.1016/j.apsusc.2003.10.031.
  • Zhang, X.-H., C. He, L. Wang, Z.-Q. Li, and Q. Feng. 2015. Synthesis, characterization and nonisothermal decomposition kinetics of La2(CO3)3·3.4H2O. Journal of Thermal Analysis and Calorimetry 119 (3):1713–22. doi:10.1007/s10973-015-4389-3.
  • Zhang, X., J. Wang, L. Wang, Z. Li, W. Hu, Y. Dai, and Q. Feng, S. Lei, Q. Li, W. Zhang. 2023. Catalytic capacity evolution of montmorillonite in in-situ combustion of heavy oil. Fuel 333:126621. doi:https://doi.org/10.1016/j.clay.2022.106507.
  • Zhang, X., J. Wang, L. Wang, Z. Li, R. Wang, H. Li, and Q. Feng, H. Liu, W. Hu, Q. Feng. 2022. Effects of kaolinite and its thermal transformation on oxidation of heavy oil. Applied Clay Science 223:106507. doi:https://doi.org/10.1016/j.fuel.2022.126621.
  • Zhao, R., Y. Chen, R. Huan, L. M. Castanier, and A. R. Kovscek. 2015. An experimental investigation of the in-situ combustion behavior of Karamay crude oil. Journal of Petroleum Science and Engineering 127:82–92. doi:10.1016/j.petrol.2015.01.005.
  • Zhao, R., M. Heng, C. Chen, T. Li, Y. Shi, and J. Wang. 2021. Catalytic effects of Al2O3 nano-particles on thermal cracking of heavy oil during in-situ combustion process. Journal of Petroleum Science and Engineering 205:108978. doi:10.1016/j.petrol.2021.108978.
  • Zhao, R., C. Zhang, F. Yang, M. Heng, P. Shao, and Y. Wang. 2018. Influence of temperature field on rock and heavy components variation during in-situ combustion process. Fuel 230:244–57. doi:10.1016/j.fuel.2018.05.037.
  • Zhao, S., W. Pu, M. A. Varfolomeev, Y. Liu, and Z. Liu. 2020. Oxidation characteristics of heavy oil and its SARA fractions during combustion using TG-FTIR. Journal of Petroleum Science and Engineering 192:107331. doi:10.1016/j.petrol.2020.107331.
  • Zhao, S., W. Pu, M. A. Varfolomeev, C. Yuan, and A. A. Rodionov. 2019. Integrative investigation of low-temperature oxidation characteristics and mechanisms of heavy crude oil. Industrial & Engineering Chemistry Research 58 (31):14595–602. doi:10.1021/acs.iecr.9b03346.
  • Zheng, R., J. Pan, G. Cai, J. Liang, D. Liu, Q. Song, and Q. Yao. 2019. Effects of clay minerals on the low-temperature oxidation of heavy oil. Fuel 254:115597. doi:10.1016/j.fuel.2019.06.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.