126
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical study on convective heat transfer and flow characteristics in twisted tri-lobed tubes

, , &
Pages 7560-7577 | Received 19 Jan 2023, Accepted 25 May 2023, Published online: 15 Jun 2023

References

  • Alsulaiei, Z. M. A., H. M. Hasan, and M. H. Fagr. 2021. Flow and heat transfer in obstacled twisted tubes. Case Studies in Thermal Engineering 27:101286. doi:10.1016/j.csite.2021.101286.
  • Amin, S., E. Sajad, A. I. Baniasad, J. Mehdi, K. Masoud, and S. Mohammad. 2022. Investigation on two-phase fluid mixture flow, heat transfer and entropy generation of a non-Newtonian water-CMC/CuO nanofluid inside a twisted tube with variable twist pitch: Numerical and evolutionary machine learning simulation. Engineering Analysis with Boundary Elements 140:322–37. doi:10.1016/j.enganabound.2022.04.022.
  • Arasteh, H., R. Mashayekhi, M. Goodarzi, S. H. Motaharpour, M. Dahari, and D. Toghraie. 2019. Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid. Journal of Thermal Analysis and Calorimetry 138 (2):1461–76. doi:10.1007/s10973-019-08168-x.
  • Bazdar, H., D. Toghraie, F. Pourfattah, O. A. Akbari, H. M. Nguyen, and A. Asadi. 2020. Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths. Journal of Thermal Analysis and Calorimetry 139 (3):2365–80. doi:10.1007/s10973-019-08637-3.
  • Bejan, A. Convection heat transfer. 4th. Wiley: New York. 2013. 10.1002/9781118671627
  • Bhadouriya, R., A. Agrawal, and S. V. Prabhu. 2015. Experimental and numerical study of ?uid ?ow and heat transfer in a twisted square duct. International Journal of Heat and Mass Transfer 82:143–58. doi:10.1016/j.ijheatmasstransfer.2014.11.054.
  • Cheng, J. L., Z. Q. Qian, Q. Wang, C. H. Fei, and W. L. Huang. 2019. Numerical study of heat transfer and flow characteristic of the twisted tube with different cross-section shapes. Heat Mass Transfer 55 (3):823–44. doi:10.1007/s00231-018-2471-7.
  • Dzyubenko, B. V. 1982. Heat exchanger along the initial segment in a heat exchanger with a helical flow. Journal of Engineering Physics 42 (2):153–57. doi:10.1007/BF00827261.
  • Dzyubenko, B. V. 2005. Influence of flow twisting on convective heat transfer in banks of twisted tubes. Heat Transfer Research 36 (6):449–60. doi:10.1615/HeatTransRes.v36.i6.20.
  • Dzyubenko, B. V., and R. I. Yakimenko. 2001. Efficiency of heat transfer surfaces using the method of effective parameters. Heat Transfer Research 32 (7–8):447–54. doi:10.1615/HeatTransRes.v32.i7-8.150.
  • Feizabadi, A., M. Khoshvaght-Aliabadi, and A. B. Rahimi. 2018. Numerical investigation on Al2O3/water nanofluid flow through twisted serpentine tube with empirical validation. Applied Thermal Engineering 137:296–309. doi:10.1016/j.applthermaleng.2018.03.076.
  • Fu, J. H., X. Miao, Q. Zuo, H. P. Tang, Y. Li, Y. Zhang, and B. Sunden. 2022. Heat transfer and field synergy characteristics in a rectangular unit channel under mechanical vibration. International Communications in Heat and Mass Transfer 136:106176. doi:10.1016/j.icheatmasstransfer.2022.106176.
  • Gao, X. N., H. C. Zou, D. Y. Wang, and Y. S. Lu. 2008. Heat transfer and flow resistance properties in a twisted oblate tube with large twist ratio. Journal of South China University of Technology (Natural Science Edition) (China) 36 (11):17–21.
  • Gnielinski, V. 2001. Introduction to heat transfer. eds. F.P. Incropera and D.P. DeWitt, 4th ed., 411–429. New York: Wiley.
  • Gu, H. D., Y. P. Chen, B. Sunden, J. F. Wu, N. Song, and J. D. Su. 2020. Influence of alternating V-rows tube layout on thermal-hydraulic characteristics of twisted elliptical tube heat exchangers. International Journal of Heat and Mass Transfer 159:120070. doi:10.1016/j.ijheatmasstransfer.2020.120070.
  • Gu, H. D., Y. P. Chen, J. F. Wu, and B. Sunden. 2020. Performance investigation on twisted elliptical tube heat exchangers with coupling-vortex square tube layout. International Journal of Heat and Mass Transfer 151:119473. doi:10.1016/j.ijheatmasstransfer.2020.119473.
  • Guo, Z. Y. 2003. Principle of field coordination in heat exchangers and its applications. Journal of Mechanical Engineering (China) 39 (12):1–9. doi:10.3901/JME.2003.12.001.
  • Guo, Z. Y., D. Y. Li, and B. X. Wang. 1998. A novel concept for convective heat transfer enhancement. International Journal of Heat and Mass Transfer 41 (14):2221–25. doi:10.1016/S0017-9310(97)00272-X.
  • Guo, A. N., and L. B. Wang. 2020. The mechanism of laminar convective heat transfer enhancement enforced by twisting of the elliptical tube. International Journal of Heat and Mass Transfer 157:119961. doi:10.1016/j.ijheatmasstransfer.2020.119961.
  • Guo, J. F., M. T. Xu, and L. Cheng. 2009. The application of ?eld synergy number in shell-and-tube heat exchanger optimization design. Applied Energy 86 (10):2079–87. doi:10.1016/j.apenergy.2009.01.013.
  • Han, Y., J. N. Li, C. Zhang, Y. J. Zhu, X. H. Wu, C. Lv, Z. Y. Zhang, and C. C. Zhang. 2023. Exergy loss analysis on heat transfer characteristics of twisted petaloid spirally wound tube with the convection boundary condition. Applied Thermal Engineering 218:119291. doi:10.1016/j.applthermaleng.2022.119291.
  • Khoshvaght-Aliabadi, M. 2014. Influence of different design parameters and Al2O3-water nanofluid flow on heat transfer and flow characteristics of sinusoidal-corrugated channels. Energy Conversion and Management 88:96–105. doi:10.1016/j.enconman.2014.08.042.
  • Khoshvaght-Aliabadi, M., and Z. Arani-Lahtari. 2016. Proposing new con?gurations for twisted square channel (TSC): Nano?uid as working ?uid. Applied Thermal Engineering 108:709–19. doi:10.1016/j.applthermaleng.2016.07.173.
  • Liaw, K., J. Kurnia, Z. Putra, M. Aziz, and A. Sasmito. 2023. Enhanced turbulent convective heat transfer in helical twisted multilobe tubes. International Journal of Heat and Mass Transfer 202:123687. doi:10.1016/j.ijheatmasstransfer.2022.123687.
  • Li, X. Z., S. J. Liu, S. Z. Tang, X. Mo, L. Wang, and D. S. Zhu. 2022. Analysis of heat transfer characteristics and entry evaluation of high viscosity fluid in a novel twisted tube. Applied Thermal Engineering 210:118388. doi:10.1016/j.applthermaleng.2022.118388.
  • Li, X. Z., Y. Y. Tan, J. F. Yuan, Z. W. Wang, and L. Wang. 2020. Parametrization of secondary flow intensity for laminar forced convection in a twisted elliptical tube and derivation of loss coefficient and nusselt number correlations by numerical analysis. International Journal of Thermal Sciences 155 (C):106425. doi:10.1016/j.ijthermalsci.2020.106425.
  • Liu, Y., Y. Dong, L. T. Xie, C. H. Zhang, and C. Xu. 2022. Heat transfer enhancement of supercritical CO2 in solar tower receiver by the field synergy principle. Applied Thermal Engineering 212:118479. doi:10.1016/j.applthermaleng.2022.118479.
  • Liu, B. W., C. Y. Shi, W. Liu, and Z. C. Liu. 2022. Research on heat exchange and flow resistance performance and multi-objective structural optimization of oval twist tube with two fins. Journal of Northeast Electric Power University (China) 42 (3):37–45. doi:10.19718/j.issn.1005-2992.2022-03-0037-09.
  • Liu, S. J., Y. D. Yin, A. M. Tu, and D. S. Zhu. 2020. Experimental investigation on the shell-side performance of a novel shell and tube oil cooler with twisted oval tubes. International Journal of Thermal Sciences 152:106290. doi:10.1016/j.ijthermalsci.2020.106290.
  • Li, X. Z., L. Wang, R. Feng, Z. W. Wang, S. J. Liu, and D. S. Zhu. 2021. Study on shell side heat transport enhancement of double tube heat exchangers by twisted oval tubes. International Communications in Heat and Mass Transfer 124:105273. doi:10.1016/j.icheatmasstransfer.2021.105273.
  • Li, X. Z., L. Wang, R. Feng, Z. W. Wang, and D. S. Zhu. 2021. Thermal-hydraulic characteristics of twisted elliptical tube bundle in staggered arrangement. Journal of Thermal Science 30 (6):1925–37. doi:10.1007/s11630-021-1450-3.
  • Li, X. Z., D. S. Zhu, Y. D. Yin, A. M. Tu, and S. J. Liu. 2019. Parametric study on heat transfer and pressure drop of twisted oval tube bundle with in line layout. International Journal of Heat and Mass Transfer 135:860–72. doi:10.1016/j.ijheatmasstransfer.2019.02.031.
  • Luo, C., and K. W. Song. 2021. Thermal performance enhancement of a double-tube heat exchanger with novel twisted annulus formed by counter-twisted oval tubes. International Journal of Thermal Sciences 164:106892. doi:10.1016/j.ijthermalsci.2021.106892.
  • Mashayekhi, R., A. H. Eisapour, M. Eisapour, P. Talebizadehsardari, and A. Rahbari. 2022. Hydrothermal performance of twisted elliptical tube equipped with twisted tape insert. International Journal of Thermal Sciences 172:107233. doi:10.1016/j.ijthermalsci.2021.107233.
  • Menter, F. R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32 (8):1598–605. doi:10.2514/3.12149.
  • Mostafazadeh, A., D. Toghraie, R. Mashayekhi, and O. A. Akbari. 2019. Effect of radiation on laminar natural convection of nanofluid in a vertical channel with single- and two-phase approaches. Journal of Thermal Analysis and Calorimetry 138 (1):779–94. doi:10.1007/s10973-019-08236-2.
  • Petukhov, B. S. 1970. Heat transfer and friction in turbulent pipe flow with variable physical properties. Advances in Heat Transfer 6:503–64. doi:10.1016/s0065-2717(08)70153-9.
  • Samruaisin, P., S. Kunlabud, K. Kunnarak, V. Chuwattanakul, and S. Eiamsa-Ard. 2019. Intensification of convective heat transfer and heat exchanger performance by the combined influence of a twisted tube and twisted tape. Case Studies in Thermal Engineering 14:100489. doi:10.1016/j.csite.2019.100489.
  • Shakhaoath Khan, M., R. P. Zou, and A. B. Yu. 2021. Computational simulation of air-side heat transfer and pressure drop performance in staggered mannered twisted oval tube bundle operating in crossflow. International Journal of Thermal Sciences 161:106748. doi:10.1016/j.ijthermalsci.2020.106748.
  • Tang, X. Y., X. F. Dai, and D. S. Zhu. 2015. Experimental and numerical investigation of convective heat transfer and fluid flow in twisted spiral tube. International Journal of Heat and Mass Transfer 90:523–41. doi:10.1016/j.ijheatmasstransfer.2015.06.068.
  • Wang, Y., J. J. Zhou, Z. G. Jin, and X. H. Yang. 2021. Performance investigation of the organosilicon conduction oil with CuO nanoparticles filled in twist tube flow for solar energy storage. Journal of Energy Storage 41:102911. doi:10.1016/j.est.2021.102911.
  • Webb, R. L., and N. H. Kim. Principle of enhanced heat transfer. Second. Taylor and Francis Group: New York. 2005. 10.4324/9780203017869-1
  • Wu, C. C., C. K. Chen, Y. T. Yang, and K. H. Huang. 2018. Numerical simulation of turbulent flow forced convection in a twisted elliptical tube. International Journal of Thermal Sciences 132:199–208. doi:10.1016/j.ijthermalsci.2018.05.028.
  • Yu, C., H. Zhang, Y. Wang, M. Zeng, and B. Gao. 2020. Numerical study on turbulent heat transfer performance of twisted oval tube with a different cross-sectioned wire coil. Case Studies in Thermal Engineering 22:100759. doi:10.1016/j.csite.2020.100759.
  • Zhao, J. Y., L. X. Li, W. Xie, and H. X. Zhao. 2022. Flow and heat transfer characteristics of liquid metal and supercritical CO2 in a twisted tube heat exchanger. International Journal of Thermal Sciences 174:107453. doi:10.1016/j.ijthermalsci.2021.107453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.