67
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Studies on enhancing the heat transfer rate of a multitemperature phase change materials-integrated thermal storage tank

, , &
Pages 7578-7589 | Received 22 Nov 2022, Accepted 23 May 2023, Published online: 11 Jun 2023

References

  • Afaynou, I., H. Faraji, K. Choukairy, A. Arshad, and M. Arıcı. 2023. Heat transfer enhancement of phase-change materials (PCMs) based thermal management systems for electronic components: A review of recent advances. International Communications in Heat and Mass Transfer 143:106690. doi:10.1016/j.icheatmasstransfer.2023.106690.
  • Afsharpanah, F., G. Cheraghian, F. Akbarzadeh Hamedani, E. Shokri, and S. S. Mousavi Ajarostaghi. 2022a. Utilization of carbon-based nanomaterials and plate-fin networks in a cold PCM container with application in air conditioning of buildings. Nanomaterials 12 (11):1927. doi:10.3390/nano12111927.
  • Afsharpanah, F., M. Izadi, F. Akbarzadeh Hamedani, S. Soheil Mousavi Ajarostaghi, and W. Yaïci. 2022. Solidification of nano-enhanced PCM-porous composites in a cylindrical cold thermal energy storage enclosure. Case Studies in Thermal Engineering 39:102421. doi:10.1016/j.csite.2022.102421.
  • Afsharpanah, F., S. S. Mousavi Ajarostaghi, F. Akbarzadeh Hamedani, and M. Saffari Pour. 2022b. Compound heat transfer augmentation of a shell-and-coil ice storage unit with metal-oxide nano additives and connecting plates. Nanomaterials 12 (6):1010. doi:10.3390/nano12061010.
  • Afsharpanah, F., K. Pakzad, S. Soheil Mousavi Ajarostaghi, and M. Arıci. 2022. Assessment of the charging performance in a cold thermal energy storage container with two rows of serpentine tubes and extended surfaces. Journal of Energy Storage 51:104464. doi:10.1016/j.est.2022.104464.
  • Afsharpanah, F., S. Soheil Mousavi Ajarostaghi, and M. Arıci. 2022. Parametric study of phase change time reduction in a shell-and-tube ice storage system with anchor-type fin design. International Communications in Heat and Mass Transfer 137:106281. doi:10.1016/j.icheatmasstransfer.2022.106281.
  • Akarsh, A., and S. Dirbude. 2021. Effect of HTF flow direction, mass flow rate and fins on melting and solidification in a latent-heat-based thermal energy storage device. Journal of Physics: Conference Series 2054 (1):012049. doi:10.1088/1742-6596/2054/1/012049.
  • Anjankar, P., S. Lakade, A. Padalkar, S. Nichal, Y. Devarajan, N. Lakshmaiya, and N. Subbaiyan 2022. Experimental investigation on the effect of liquid phase and vapor phase separation over performance of falling film evaporator. Environmental Quality Management:1–9. doi:10.1002/tqem.21952.
  • Arulprakasajothi, M., N. Poyyamozhi, P. Chandrakumar, N. Dilip Raja, and Y. D. 2023. Experimental investigation of salinity gradient solar pond with nano-based phase change materials. Energy Sources, Part A: Recovery. Utilization, and Environmental Effects 45 (2):5465–80. doi:10.1080/15567036.2023.2207508.
  • Balakrishnan, R., Govindaraj, K., Mahalingam, A, and Devarajan, Y. 2023. Analysis of the thermal management of electronic equipment by employing silicon carbide nano-pcm-based heat sink. Environmental Science and Pollution Research. doi:10.1007/s11356-023-27468-2.
  • Devarajan, Y., Munuswamy, D., Subbiah, G, and Mishra, R. 2023. Critical operating parameters of solar flat plate collectors using CuO nanoparticles of different volume fractions subjected to natural convection. Environmental Progress and Sustainable Energy. doi:10.1002/ep.14125.
  • Du, Y., T. Zhou, C. Zhao, and Y. Ding. 2022. Molecular dynamics simulation on thermal enhancement for carbon nano tubes (CNTs) based phase change materials (PCMs). International Journal of Heat and Mass Transfer 182:122017. doi:10.1016/j.ijheatmasstransfer.2021.122017.
  • Imafidon, O. J., and D. S.-K. Ting. 2023. Retrofitting buildings with Phase Change Materials (PCM) – the effects of PCM location and climatic condition. Building and Environment 236:110224. doi:10.1016/j.buildenv.2023.110224.
  • Jiang, J., Y. Hong, Q. Li, and J. Du. 2023. Numerical analysis on heat transfer and melting characteristics of a solid-liquid phase change process in a rectangular cavity inserted with bifurcated fractal fins. International Communications in Heat and Mass Transfer 142:106616. doi:10.1016/j.icheatmasstransfer.2023.106616.
  • Khimsuriya, Y. D., D. K. Patel, Z. Said, H. Panchal, M. M. Jaber, L. Natrayan, V. Patel, and A. S. El-Shafay. 2022. Artificially roughened solar air heating technology – a comprehensive review. Applied Thermal Engineering 214:118817. doi:10.1016/j.applthermaleng.2022.118817.
  • Klimeš, L., T. Mauder, P. Charvát, and J. Štětina. 2018. Front tracking in modelling of latent heat thermal energy storage: Assessment of accuracy and efficiency, benchmarking and GPU-based acceleration. Energy 155:297–311. doi:10.1016/j.energy.2018.05.017.
  • Matheswaran, M. M., T. V. Arjunan, S. Muthusamy, L. Natrayan, H. Panchal, S. Subramaniam, N. K. Khedkar, A. S. El-Shafay, and C. Sonawane. 2022. A case study on thermo-hydraulic performance of jet plate solar air heater using response surface methodology. Case Studies in Thermal Engineering 34:101983. doi:10.1016/j.csite.2022.101983.
  • Munuswamy, D. B., and Y. Devarajan. 2023. Critical examination of the role of silica nanoparticle dispersions in heat transfer fluid for solar applications. Silicon 15 (1):571–81. doi:10.1007/s12633-022-02015-9.
  • Nagappan, B., Devarajan, Y, and Kariappan, E. 2022. Performance analysis of sustainable solar energy operated ejector refrigeration system with the combined effect of Scheffler and parabolic trough collectors to lower greenhouse gases. Environmental Science and Pollution Research. 29 (32):48411–48423. doi:10.1007/s11356-022-19058-5.
  • Nagappan, B., Y. Devarajan, E. Kariappan, T. Raja, and R. Thulasiram. 2023. A novel attempt to enhance the heat transfer rate of thermal energy storage using Multitemperature phase change materials through experimental and numerical modelling. Applied Thermal Engineering 227:120457. doi:10.1016/j.applthermaleng.2023.120457.
  • Rajmohan, T., S. Ramesh, M. Arulprakasajothi, Y. Devarajan, M. Sundaram, and N. Subbaiyan. 2023. Thermal management using nano coated heat sink for electric vehicle battery cooling. Environmental Quality Management 1–10. doi:10.1002/tqem.2199.
  • Ramesh, C., M. Vijayakumar, S. Alshahrani, G. Navaneethakrishnan, R. Palanisamy, L. Natrayan, C. A. Saleel, A. Afzal, S. Suboor, and H. Panchal. 2022. Performance enhancement of selective layer coated on solar absorber panel with reflector for water heater by response surface method: A case study. Case Studies in Thermal Engineering 36:102093. doi:10.1016/j.csite.2022.102093.
  • Rusin, K., J. Ochmann, Ł. Bartela, S. Rulik, B. Stanek, M. Jurczyk, and S. Waniczek. 2022. Influence of geometrical dimensions and particle diameter on exergy performance of packed-bed thermal energy storage. Energy 260:125204. doi:10.1016/j.energy.2022.125204.
  • Shao, X., Y. Chenxu, B. Wang, N. Zhang, and Y. Yuan. 2023. Mechanical agitation triggered crystallization of eutectic phase change material xylitol/erythritol with persistent supercooling for controllable heat retrieval. Solar Energy Materials and Solar Cells 256:112335. doi:10.1016/j.solmat.2023.112335.
  • Shu, G., T. Xiao, J. Guo, P. Wei, X. Yang, and Y.-L. He. 2023. Effect of charging/discharging temperatures upon melting and solidification of PCM-metal foam composite in a heat storage tube. International Journal of Heat and Mass Transfer 201:123555. doi:10.1016/j.ijheatmasstransfer.2022.123555.
  • Singh, V. K., and A. Patel. 2022. Effect of mushy zone constant on the melting of a solid-liquid PCM under hyper-gravity conditions. International Communications in Heat and Mass Transfer 134:105993. doi:10.1016/j.icheatmasstransfer.2022.105993.
  • Trujillano, R., B. González, and V. Rives. 2021. Phase Change Materials (PCMs) based in paraffin/synthetic saponite used as heat storage composites. Energies 14 (21):7414. doi:10.3390/en14217414.
  • Ugle, V. V., M. Arulprakasajothi, S. Padmanabhan, Y. Devarajan, N. Lakshmaiya, and N. Subbaiyan. 2023. Investigation of heat transport characteristics of titanium dioxide nanofluids with corrugated tube. Environmental Quality Management Portico. doi:10.1002/tqem.21999.
  • Wang, G., L. Bai, and J. Lin. 2023. Liquid-structure coupled simulation study on impacts of HTF temperature on discharge and mechanics performances of PCM heat storage system. Case Studies in Thermal Engineering 44:102885. doi:10.1016/j.csite.2023.102885.
  • Wang, S., Y. Xing, Z. Hao, J. Yin, X. Hou, and Z. Wang. 2021. Experimental study on the thermal performance of PCMs based heat sink using higher alcohol/graphite foam. Applied Thermal Engineering 198:117452. doi:10.1016/j.applthermaleng.2021.117452.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.