41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Working Performance and Feasibility Evaluation of Four-stroke Compressed Air Engine

& ORCID Icon
Pages 7590-7605 | Received 24 Apr 2023, Accepted 04 Jun 2023, Published online: 12 Jun 2023

References

  • Bompard, E., A. Botterud, S. Corgnati, T. Huang, M. Jafari, P. Leone, S. Mauro, G. Montesano, C. Papa, F. Profumo, et al. 2020. An electricity triangle for energy transition: Application to Italy. Applied Energy 277:1–18. doi:10.1016/j.apenergy.2020.115525.
  • Boulakhbar, M., B. Lebrouhi, T. Kousksou, S. Smouh, A. Jamil, M. Maaroufi, and M. Zazi. 2020. Towards a large-scale integration of renewable energies in Morocco. Journal of Energy Storage 32:1–17. doi:10.1016/j.est.2020.101806.
  • Huang, C. Y., C. K. Sung, and C. A. Lin. The investigation of split-cycle air engine[C]. 28th CSME National Conference, Taichung, Taiwan, 2011.
  • Liu, C. M., C. L. Huang, C. K. Sung, and Huang, C. Y. 2016. Performance analysis of a two-stage expansion air engine. Energy 115:140–48. doi:10.1016/j.energy.2016.09.023.
  • Liu, H., G. Tao, and Y. Chen. 2004. The design of the power system in AIR-powered vehicle. Chinese Hydraulics & Pneumatics 5:24–26.
  • Marvania, D., and S. Subudhi. 2017. A comprehensive review on compressed air powered engine. Renewable and Sustainable Energy Reviews 70:1119–30. doi:10.1016/j.rser.2016.12.016.
  • Mitianiec, W. 2018. Modern pneumatic and combustion hybrid engines. Improved Trends Internship Combustion Engines 16 (333):15–16.
  • Nabil, T. 2019. Investigation and implementation of compressed air powered motorbike engines. Engineering Reports 1 (e12034):1–13. doi:10.1002/eng2.12034.
  • Rajan, K., K. R. Senthil Kumar, M. Rajaram Narayanan, and Mohanavel, V . 2021. Impact of nozzle opening pressure on the performance and emission behaviours of the CI engine using yellow oleander biodiesel. International Journal of Ambient Energy. 42(13):1499–505. doi:10.1080/01430750.2019.1611642.
  • Ramasubramanian, S., M. Chandrasekaran, S. Baskar, A. Dowhithamaran. 2020. Design and development of pneumatic compressed air vehicle. Materials Today: Proceedings 37 (4):690–93. doi:10.1016/j.matpr.2020.05.637.
  • Rząsa, M., E. Łukasiewicz, and D. Wójtowicz. 2021. Test of a new low-speed compressed air engine for energy recovery. Energies 14 (4):1179–93. doi:10.3390/en14041179.
  • Shi, Y., F. Li, M. Cai, and Q. Yu. 2016. Literature review: Present state and future trends of air-powered vehicles. Journal of Renewable and Sustainable Energy 8 (2):1–15. doi:10.1063/1.4944970.
  • Shiraki, H., K. Matsumoto, and Y. Shigetomi . 2020. Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy. Applied Energy 259:1–10. doi:10.1016/j.apenergy.2019.114196.
  • Tan, X., D. Zhan, P. Lyu, and Fan, Y. 2021. Online state-of-health estimation of lithium-ion battery based on dynamic parameter identification at multi timescale and support vector regression. Journal of Power Sources 484:1–10. doi:10.1016/j.jpowsour.2020.229233.
  • Uszyński, S., L. Ambroziak, M. Kondratiuk, and Kulesza, Z. Air consumption analysis in compressed air powered vehicles[C]. 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), Miedzyzdroje, Poland. IEEE, 2018: 837–42.
  • Vishnuvardhan, M., K. S. Prasad, and J. Purushothaman. 2020. Design and experimental inverstigation of compressed air engine. Materials Today: Proceedings 33 (7):3311–13. doi:10.1016/j.matpr.2020.04.739.
  • Voser, C., C. Dönitz, G. Ochsner, Onder, C., and Guzzella, L. 2012. In-cylinder boosting of turbocharged spark-ignited engines. Part 1: Model-based design of the charge valve. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 226(10):1408–18. doi:10.1177/0954407012443765.
  • Wang, L., S. L. Zhu, and X. R. Zhang. 2022a. Performance and economic evaluation of CO2 (R744) air conditioning system driven by compressed air engine. International Journal of Refrigeration 135:189–97. doi:10.1016/j.ijrefrig.2021.12.026.
  • Wang, L., S. L. Zhu, X. R. Zhang, and Zhang, H. Y. 2022b. Another way of cleaner public transportation: Four-stroke high torque CAE (Compressed Air Engine) performance analysis and CAE bus. Energy Reports 8:5727–38. doi:10.1016/j.egyr.2022.04.024.
  • Xu, Y., H. Zhang, F. Yang, Tong, L., Yan, D., Yang, Y., Wang, Y., and Wu, Y. 2021. Experimental research on universal characteristics and output performance of pneumatic motor for compressed air vehicle. Journal of Energy Storage. 41(9):1–12. doi:10.1016/j.est.2021.102943.
  • Yadav, V., P. C. Pujari, and N. Kumar. 2020. Modification of 4-stroke si engine to a compressed air engine for a light utility vehicle[C]. Maerials Science and Engineering 804 (1):1–12. doi:10.1088/1757-899X/804/1/012006.
  • Yu, Q., M. Cai, and Y. Shi. 2016. Working characteristics of two types of compressed air engine. Journal of Renewable and Sustainable Energy 8 (3):1–18. doi:10.1063/1.4948517.
  • Zeng, F. C. 2019. Analysis and experimental research of the working characteristics on four-stroke compressed air engine[D]. in Chinese: Wuhan University of Technology.
  • Zeng, F. C., and J. L. Xu. 2018. Study on exergy analysis of a compressed air engine. Thermal Science 22 (3):1179–91. doi:10.2298/TSCI171113108Z.
  • Zeng, F. C., and J. L. Xu. 2020. Performance analysis of a four-stroke compressed air engine. Thermal Science 24 (1A):113–26. doi:10.2298/TSCI180601061Z.
  • Zeng, F. C., and J. L. Xu. 2022. Theoretical and experimental research on the port timing of a compressed air engine. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (2):4888–901. doi:10.1080/15567036.2019.1655606.
  • Zeng, F. C., J. L. Xu, R. Zhao Experimental research of a four-stroke piston type compressed air engine[C].E3S Web of Conferences, Pairs, France, 201980:1–5.
  • Zhang, X. H., X. Wang, L. Wen, Y. Zhu, Z. Zuo, and H. Chen. 2021. Energy and exergy analysis of compressed air engine systems. Energy Reports 7:2316–23. doi:10.1016/j.egyr.2021.04.025.
  • Zou, C., B. Xiong, H. Xue, Zheng, D., Ge, Z., Wang, Y., Jiang, L., Pan, S., and Wu, S . 2021. The role of new energy in carbon neutral. Petroleum Exploration and Development. 48(2):480–91. doi:10.1016/S1876-3804(21)60039-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.