202
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Performance analysis in the design of thermoacoustic refrigeration system: review

&
Pages 7705-7731 | Received 22 Nov 2022, Accepted 26 May 2023, Published online: 15 Jun 2023

References

  • Abd Elaziz, Mohammed, H. A. Elsheikh, and W. Swellam Sharshir. 2019. Improved prediction of oscillatory heat transfer coefficient for a thermoacoustic heat exchanger using modified adaptive neuro-fuzzy inference system. International Journal of Refrigeration 102:47–54. doi:10.1016/j.ijrefrig.2019.03.009.
  • Abd El-Rahman, I. A., W. A. Abdelfattah, K. S. Abdelwahed, A. Salama, A. Rabie, and A. Hamdy. 2020. A compact standing-wave thermoacoustic refrigerator driven by a rotary drive mechanism. Case Studies in Thermal Engineering 21:100708. doi:10.1016/j.csite.2020.100708.
  • Agustina, D., and S. Purnama. 2019. Experimental investigation on the effect of resonator shapes on the temperature characteristic of thermoacoustic cooling device. IOP Conference Series: Materials Science & Engineering IOP Publishing. 539(1):012041. doi:10.1088/1757-899X/539/1/012041.
  • Alamir, A., M. Alamir, and A. Mahmoud. 2021a. Thermoacoustic energy conversion devices: Novel insights. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 77 (2):130–44. doi:10.37934/arfmts.77.2.130144.
  • Alamir, M. A. Alamir, and A. Mahmoud. 2021b. An artificial neural network model for predicting the performance of thermoacoustic refrigerators. International Journal of Heat & Mass Transfer 164:120551. doi:10.1016/j.ijheatmasstransfer.2020.120551.
  • Alamir, M.-A., and A.-A. Elamer. 2020. A compromise between the temperature difference and performance in a standing wave thermoacoustic refrigerator. International Journal of Ambient Energy 41 (13):1441–53. doi:10.1080/01430750.2018.1517673.
  • Alcock, A.-C. L.-K. T., T.-C. Jen, and T. C. Jen. 2018. Experimental investigation of an adjustable thermoacoustically-driven thermoacoustic refrigerator. International Journal of Refrigeration 94:71–86. doi:10.1016/j.ijrefrig.2018.07.015.
  • Almusaied, Z., and B. Asiabanpour. 2021. Utilizing additive manufacturing in thermoacoustic refrigeration-based atmospheric water generation. In 2021 international solid freeform fabrication symposium, University of Texas at Austin, 137–149.
  • Amirin, T., M. Yulianto, and M. Yulianto. 2019. Experimental study of thermoacoustic cooling with parallel-plate stack in different distances. IOP Conference Series: Materials Science & Engineering 539:012037. doi:10.1088/1757-899X/539/1/012037.
  • Arya, B., B. R. Nayak, and N.-V. Shivakumara. 2018. Effect of dynamic pressure on the performance of thermoacoustic refrigerator with Aluminium (Al) resonator. IOP Conference Series: Materials Science and Engineering, IOP Publishing 346 (1):012034. doi:10.1088/1757-899X/346/1/012034.
  • Belaid, K. N., and O. Hireche. 2018. Influence of heat exchangers blockage ratio on the performance of thermoacoustic refrigerator. International Journal of Heat and Mass Transfer 127:834–42. doi:10.1016/j.ijheatmasstransfer.2018.05.144.
  • Bhatti, U.-N., and S. Bashmal. 2021. Performance evaluation of a standing wave thermoacoustic refrigerator using normalized sensitivity coefficients. Journal of Thermal Science and Engineering Applications 13 (3). doi:10.1115/1.4047943.
  • Bhatti, U. N., S. Bashmal, S. Khan, and R. Ben-Mansour. 2022. Numerical modeling of standing wave thermoacoustic devices–A review. International Journal of Refrigeration 146:47–62. doi:10.1016/j.ijrefrig.2022.09.024.
  • Bouramdane, Z., A. Bah, M. Alaoui, and N. Martaj. 2022. Numerical analysis of thermoacoustically driven thermoacoustic refrigerator with a stack of parallel plates having corrugated surfaces. International Journal of Air-Conditioning and Refrigeration 30 (1):1. doi:10.1007/s44189-022-00002-8.
  • Chakradeo, A. P., S. P. Anagolkar, A. B. Shendge, and P. M. Pawar. 2019. Design, Development and Manufacturing of Thermoacoustic Cooler.
  • Chan, I. S., N. M. Ghazali, N. A Zolpakar, and M. Mohamad. 2020. Four-variable simultaneous optimization of the cooling and acoustic power with particle swarm optimization. International Journal of Air-Conditioning and Refrigeration. 28(2):2050012. doi:10.1142/S2010132520500121.
  • Chen, G., L. Tang, and Y. Zhibin. 2020. Underlying physics of limit-cycle, beating and quasi-periodic oscillations in thermoacoustic devices. Journal of Physics D: Applied Physics 53 (21):215502. doi:10.1088/1361-6463/ab7a57.
  • Deshmukh, M. M., M. R. Kirti, R. Sumedha, and D. Miss. 2018. Shital Jadhav. Thermoacoustic Refrigeration System 280–282.
  • Devkota, R., A. Babu, P. Gupta, K. Kant, and S. Vidya. 2022. Application of thermoacoustics for cooling: A review. Innovations in Mechanical Engineering: Select Proceedings of ICIME 2021, Uttar Pradesh, India, 421–27.
  • Dhuchakallaya, I., and P. Saechan. 2018. Design and experimental evaluation of a travelling‐wave thermoacoustic refrigerator driven by a cascade thermoacoustic engine. International Journal of Energy Research 42 (9):3059–67. doi:10.1002/er.3897.
  • Dhuley, C. R., and M.-D. Atrey. 2016. Design guidelines for a thermoacoustic refrigerator. arXiv preprint arXiv:1601.05149.
  • Di Meglio, A., E. Di Giulio, R. Dragonetti, and N. Massarotti. 2021. Analysis of heat capacity ratio on porous media in oscillating flow. International Journal of Heat and Mass Transfer 179:121724. doi:10.1016/j.ijheatmasstransfer.2021.121724.
  • Di Meglio, A., and N. Massarotti. 2022. CFD modeling of thermoacoustic energy conversion: A review. Energies 15 (10):3806. doi:10.3390/en15103806.
  • Ding, X., Z. Chen, H. Kang, and L. Zhang. 2023. Research on thermoacoustic refrigeration system driven by waste heat of industrial buildings. Sustainable Energy Technologies and Assessments 55:102971. doi:10.1016/j.seta.2022.102971.
  • Elisabeta Elena, P.-O.-P.-A., A. C. Miteluț, and M. Elena Popa. 2019. Trends in refrigeration technologies used for food preservation–A review. Scientific Bulletin. Series F. Biotechnologies XXIII: 205–210 .
  • Farikhah, I., S. Supriyadi, M. Novita, A.-N. Masruri, H. Nuroso, and D. Marlina. 2022. Performance of thermoacoustic cooler driven by thermoacoustic engine with different flow Channel Radii.
  • Grzywnowicz, K., and L. Remiorz. 2019. Design of simple refrigerating device for multiparametric analysis of the thermoacoustic cooling phenomenon. International Journal of Thermodynamics 22 (4):193–201. doi:10.5541/ijot.639634.
  • Holland, D., and N. Berryman. 2020. Meta study on the optimisation of thermoacoustic cooling systems for efficiency and cooling load. PAM Review Energy Science & Technology 7: 24–34.
  • Ismail, M., M. Yebiyo, and I. Chaer. 2021. A review of recent advances in emerging alternative heating and cooling technologies. Energies 14 (2):502. doi:10.3390/en14020502.
  • Jingyuan, X., J. Hu, E. Luo, L. Zhang, and W. Dai. 2019. A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part I: Theoretical analysis of thermodynamic performance and characteristics. Energy 181:943–53. doi:10.1016/j.energy.2019.06.009.
  • Jingyuan, X., E. Luo, and S. Hochgreb. 2020. Study on a heat-driven thermoacoustic refrigerator for low-grade heat recovery. Applied Energy 271:115167. doi:10.1016/j.apenergy.2020.115167.
  • Kamil, M. Q., S.-G. Yahya, and I.-D. Azzawi. 2023. Design methodology of standing-wave thermoacoustic refrigerator: Theoretical analysis. International Journal of Air-Conditioning and Refrigeration 31 (1):1–13. doi:10.1007/s44189-023-00023-x.
  • Khan, M. I., T. Rakin Siddiqui, and M. Ashiqur Rahman. 2019. Combined experimental and numerical study on the performance of thermoacoustic refrigeration system. AIP Conference Proceedings. AIP Publishing LLC 2121: 1.
  • Krstic, A., Z. Gagne, P. Boylan, K. Franks, C. Boland, I. Jahncke, T. Gerchikov, and J. Hillier. 2020. Designing and manufacturing a thermoacoustic refrigerator. JUEPPEQ: Journal of Undergraduate Engineering Physics and Physics Experiments at Queen’s 1:1–17.
  • Liang, J., C.-D. Christiansen, K. Engelbrecht, K.-K. Nielsen, R. Bjørk, and C.-R. Bahl. 2020. Heat transfer and flow resistance analysis of a novel freeze-cast regenerator. International Journal of Heat & Mass Transfer 155:119772. doi:10.1016/j.ijheatmasstransfer.2020.119772.
  • Liu, L., Z. Yang, Y. Liu, and G. Bo. 2018. Dynamic mesh modeling and optimization of a thermoacoustic refrigerator using response surface methodology. Thermal Science. 22(2):739–47. doi:10.2298/TSCI170911059L.
  • Luo, K., D. M. Sun, J. Zhang, Q. Shen, and N. Zhang. 2017. A multi-stage traveling-wave thermoacoustically-driven refrigeration system operating at liquefied natural gas temperature. IOP Conference Series: Materials Science & Engineering IOP Publishing. 278(1):012139. doi:10.1088/1757-899X/278/1/012139.
  • Machesa, M., L. Tartibu, and M. Okwu. 2021. Prediction of the oscillatory heat transfer coefficient in thermoacoustic refrigerators. Sustainability 13 (17):9509. doi:10.3390/su13179509.
  • Miled, O., H. Dhahri, and A. Mhimid. 2020. Numerical investigation of porous stack for a solar-powered thermoacoustic refrigerator. Advances in Mechanical Engineering 12 (6):1687814020930843. doi:10.1177/1687814020930843.
  • Mishra, A., A. K. Choudhary, T. Tomar, and J. Korody. 2018. Thermoacoustic refrigerator for high-temperature gradient. MATEC Web of Conferences EDP Sciences 144.
  • Mishra, V. K., V. Kumar, S. Kushwaha, H. Shrama, and O. P. Umrao. 2018. Study and prototype of the thermoacoustic refrigerator. International Journal of Advance Research and Development 3: 114–118 .
  • Nair, M., and B. Tripathi. April 2019. Experimental studies on thermoelectric refrigeration system. Conference Paper. https://www.researchgate.net/publication/332752147.
  • Nathad, A., F. Ahmed, M. O. Khalid, R. Kumar, and H. Hafeez. 2019. Experimental analysis of an economical lab demonstration prototype of a thermo acoustic refrigerator (TAR). Energy Procedia 157:343–54. doi:10.1016/j.egypro.2018.11.199.
  • Patcharin, S., and J. Artur Jaworski. 2018. Thermoacoustic cooler to meet medical storage needs of rural communities in developing countries. Thermal Science and Engineering Progress 7:164–75. doi:10.1016/j.tsep.2018.05.001.
  • Peng, Y., H. Feng, and X. Mao. 2018a. Optimization of standing-wave thermoacoustic refrigerator stack using genetic algorithm. International Journal of Refrigeration 92:246–55. doi:10.1016/j.ijrefrig.2018.04.023.
  • Peng, Y., H. Feng, and X. Mao. 2018b. Optimization of standing-wave thermoacoustic refrigerator stack using genetic algorithm. International Journal of Refrigeration 92:246–55. doi:10.1016/j.ijrefrig.2018.04.023.
  • Rahman, A. A., and X. Zhang. 2019a. Single-objective optimization for stack unit of standing wave thermoacoustic refrigerator through fruit fly optimization algorithm. International Journal of Refrigeration 98:35–41. doi:10.1016/j.ijrefrig.2018.09.031.
  • Rahman, A. A., and X. Zhang. 2019b. Single-objective optimization for stack unit of standing wave thermoacoustic refrigerator through particle swarm optimization method. Energy Procedia 158:5445–52. doi:10.1016/j.egypro.2019.01.603.
  • Rahpeima, R., and R. Ebrahimi. 2019. Numerical investigation of the effect of stack geometrical parameters and thermo-physical properties on performance of a standing wave thermoacoustic refrigerator. Applied Thermal Engineering 149:1203–14. doi:10.1016/j.applthermaleng.2018.12.093.
  • Rahpeima, R., and R. Ebrahimi. 2022. A numerical approach for optimization of the working fluid of a standing-wave thermo-acoustic refrigerator. Engineering with Computers 1–17. doi:10.1007/s00366-022-01646-1.
  • Raut, S. A., and S. Uday Wankhede. 2017. Review of investigations in eco-friendly thermoacoustic refrigeration system. Thermal Science 21 (3):1335–47. doi:10.2298/TSCI150626186R.
  • Rawlings, T. 2022. Numerical modelling of Stirling cryocoolers [ Doctoral dissertation]. UCL (University College London)).
  • Roy, D., and S. Ghosh. 2021. An experimental study on the effect of various stack materials on thermoacoustic refrigeration effect. International Journal of Offshore and Polar Engineering IOP Publishing. 2070:1. doi:10.1088/1742-6596/2070/1/012220.
  • Sarpero, E., E. Gourdon, and D. Borelli. 2023. Experimental development and optimization of a standing wave thermoacoustic refrigerator using additive manufactured stacks. International Journal of Refrigeration 146:63–73. doi:10.1016/j.ijrefrig.2022.10.007.
  • Senga, M., and S. Hasegawa. 2016. Four-stage loop-type cascade traveling-wave thermoacoustic engine. Applied Thermal Engineering 104:258–62. doi:10.1016/j.applthermaleng.2016.05.013.
  • Shah, S. V., A. K. Parekh, K. T. Pandya, M. R. Bhavsar, and R. G. Kapadia. 2021. Analysis of thermo-acoustic refrigeration system. International Research Journal of Engineering and Technology (IRJET) 8 (8): 800–805.
  • Shaikh, R. 2021. Thermoacoustic refrigeration.
  • Shivakumara, N. V., and B. Arya. 2020. Effect of parallel plate stack spacing on the performance of thermoacoustic refrigerator in terms of temperature difference using air as a working fluid. Journal of Physics: Conference Series IOP Publishing. 1473 (1): doi:10.1088/1742-6596/1473/1/012051.
  • Timmer, A.-G. M., K. de Blok, and H. Theo van der Meer. 2018. Review on the conversion of thermoacoustic power into electricity. The Journal of the Acoustical Society of America 143 (2):841–57. doi:10.1121/1.5023395.
  • Wang, X., J. Xu, Z. Wu, and E. Luo. 2022. A thermoacoustic refrigerator with multiple-bypass expansion cooling configuration for natural gas liquefaction. Applied Energy 313:118780. doi:10.1016/j.apenergy.2022.118780.
  • Xiaofeng, L., R. Martinez-Botas, and J. Hey. 2020. Analytical framework for disturbance energy balance in thermoacoustic devices. Journal of Fluid Mechanics 885: doi:10.1017/jfm.2019.948.
  • Zahari, S.-N.-M., N.-A. Zolpakar, and N.-A. Rahmat. 2022. Flow pattern analysis for oscillatory flow inside resonator tube for thermoacoustic refrigerator using PIV measurement. The Eurasia Proceedings of Science Technology Engineering and Mathematics 21:18–26. doi:10.55549/epstem.1224534.
  • Zhu, S. 2018. A new concept of cold resonator pulse tube refrigerator. Energy 144:1026–36. doi:10.1016/j.energy.2017.12.079.
  • Zolpakar, N. A., N. Mohd-Ghazali, R. Ahmad, and T. Maré. 2017. Performance of a 3D-printed stack in a standing wave thermoacoustic refrigerator. Energy Procedia 105:1382–87. doi:10.1016/j.egypro.2017.03.513.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.