109
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimization of proton-exchange membrane fuel cells model by developed design of horse optimizer

, , , & ORCID Icon
Pages 7894-7913 | Received 15 Mar 2022, Accepted 04 May 2023, Published online: 15 Jun 2023

References

  • Agwa, A. M., A. A. El-Fergany, and G. M. Sarhan. 2019. Steady-state modeling of fuel cells based on atom search optimizer. Energies 12 (10):1884. doi:10.3390/en12101884.
  • Akbary, P., M. Ghiasi, M. R. R. Pourkheranjani, H. Alipour, and N. Ghadimi. 2019. Extracting appropriate nodal marginal prices for all types of committed reserve. Computational Economics 53 (1):1–26. doi:10.1007/s10614-017-9716-2.
  • Al-Shamma’a, A. A., F. A. A. Ali, M. S. Alhoshan, F. A. Alturki, H. M. Farh, J. Alam, and K. AlSharabi. 2021. Proton exchange membrane fuel cell parameter extraction using a supply–demand-based optimization algorithm. Processes 9(8):1416. doi:10.3390/pr9081416.
  • Bai, Q. 2010. Analysis of particle swarm optimization algorithm. Computer and Information Science 3 (1):180. doi:10.5539/cis.v3n1p180.
  • Cai, W., R. Mohammaditab, G. Fathi, K. Wakil, A. G. Ebadi, and N. Ghadimi. 2019. Optimal bidding and offering strategies of compressed air energy storage: A hybrid robust-stochastic approach. Renewable Energy 143:1–8. doi:10.1016/j.renene.2019.05.008.
  • Cao, Y., Y. Li, G. Zhang, K. Jermsittiparsert, and N. Razmjooy. 2019. Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm. Energy Reports 5:1616–25. doi:10.1016/j.egyr.2019.11.013.
  • Chen, L., et al. 2022. Optimal modeling of combined cooling, heating, and power systems using developed African Vulture Optimization: A case study in watersport complex. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects. 44(2):4296–317. doi:10.1080/15567036.2022.2074174
  • Dehghani, M., M. Ghiasi, T. Niknam, A. Kavousi-Fard, M. Shasadeghi, N. Ghadimi, and F. Taghizadeh-Hesary. 2020. Blockchain-based securing of data exchange in a power transmission system considering congestion management and social welfare. Sustainability 13 (1):1–1. doi:10.3390/su13010090.
  • Dhiman, G., and V. Kumar. 2018. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowledge-Based Systems 159:20–50. doi:10.1016/j.knosys.2018.06.001.
  • Diab, A. A. Z., H. I. Abdul‐Ghaffar, A. A. Ahmed, and H. A. Ramadan. 2022. An effective model parameter estimation of PEMFCs using GWO algorithm and its variants. IET Renewable Power Generation 16 (7):1380–400. doi:10.1049/rpg2.12359.
  • Duan, F., et al. 2022. Model parameters identification of the PEMFCs using an improved design of Crow Search Algorithm. International Journal of Hydrogen Energy. 47(79):33839–49. doi:10.1016/j.ijhydene.2022.07.251
  • Ebrahimian, H., S. Barmayoon, M. Mohammadi, and N. Ghadimi. 2018. The price prediction for the energy market based on a new method. Economic research-Ekonomska istraživanja 31 (1):313–37. doi:10.1080/1331677X.2018.1429291.
  • Erlin, T., A. G. Ebadi, D. Mavaluru, M. Alshehri, A. A. B. Mohamed, and B. Sobhani. 2019. Parameter derivation of a proton exchange membrane fuel cell based on coevolutionary ribonucleic acid genetic algorithm. Computational Intelligence 35 (4):1021–41. doi:10.1111/coin.12230.
  • Eslami, M., H. A. Moghadam, H. Zayandehroodi. et al. 2018. A new formulation to reduce the number of variables and constraints to expedite SCUC in bulky power systems. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 89:311–321. doi:10.1007/s40010-017-0475-1.
  • Fan, X., H. Sun, Z. Yuan, Z. Li, R. Shi, and N. Ghadimi. 2020. High voltage gain DC/DC converter using coupled inductor and VM techniques. IEEE Access 8:131975–87. doi:10.1109/ACCESS.2020.3002902.
  • Gao, B., P. Cheng, K. Dezhi, W. Xiping, L. Chaodong, G. Mingming, and N. Ghadimi. 2022. Optimum structure of a combined wind/photovoltaic/fuel cell-based on amended Dragon Fly optimization algorithm: A case study. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (3):7109–31. doi:10.1080/15567036.2022.2105453.
  • Ghadimi, N., M. Sedaghat, K. K. Azar, B. Arandian, G. Fathi, and M. Ghadamyari. 2023. An innovative technique for optimization and sensitivity analysis of a PV/DG/BESS based on converged Henry gas solubility optimizer: A case study. IET Generation, Transmission & Distribution. doi:10.1049/gtd2.12773.
  • Gheydi, M., A. Nouri, and N. Ghadimi. 2016. Planning in microgrids with conservation of voltage reduction. IEEE Systems Journal 12 (3):2782–90. doi:10.1109/JSYST.2016.2633512.
  • Ghiasi, M., et al. 2023a. A comprehensive review of cyber-attacks and defense mechanisms for improving security in smart grid energy systems: Past, present and future. Electric Power Systems Research 215:108975. doi:10.1016/j.epsr.2022.108975.
  • Ghiasi, M., et al. 2023b. Evolution of smart grids towards the Internet of energy: Concept and essential components for deep decarbonisation. IET Smart Grid. 6(1):86–102. doi:10.1049/stg2.12095
  • Ghiasi, M., N. Ghadimi, and E. Ahmadinia. 2019. An analytical methodology for reliability assessment and failure analysis in distributed power system. SN Applied Sciences 1 (1):44. doi:10.1007/s42452-018-0049-0.
  • Gollou, A. R., and N. Ghadimi. 2017. A new feature selection and hybrid forecast engine for day-ahead price forecasting of electricity markets. Journal of Intelligent & Fuzzy Systems 32 (6):4031–45. doi:10.3233/JIFS-152073.
  • Gong, W., and N. Razmjooy. 2020. A new optimisation algorithm based on OCM and PCM solution through energy reserve. International Journal of Ambient Energy 43:1–14. doi:10.1080/01430750.2020.1730952.
  • Guo, H., et al. 2022. Parameter extraction of the SOFC mathematical model based on fractional order version of dragonfly algorithm. International Journal of Hydrogen Energy. 47(57):24059–68. doi:10.1016/j.ijhydene.2022.05.190
  • Hamian, M., A. Darvishan, M. Hosseinzadeh, M. J. Lariche, N. Ghadimi, and A. Nouri. 2018. A framework to expedite joint energy-reserve payment cost minimization using a custom-designed method based on mixed integer genetic algorithm. Engineering Applications of Artificial Intelligence 72:203–12. doi:10.1016/j.engappai.2018.03.022.
  • Han, E., and N. Ghadimi. 2022. Model identification of proton-exchange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm. Sustainable Energy Technologies and Assessments 52:102005. doi:10.1016/j.seta.2022.102005.
  • Hatamlou, A. 2013. Black hole: A new heuristic optimization approach for data clustering. Information Sciences 222:175–84. doi:10.1016/j.ins.2012.08.023.
  • Hou, R., S. Li, M. Wu, G. Ren, W. Gao, M. Khayatnezhad, and F. Gholinia. 2021. Assessing of impact climate parameters on the gap between hydropower supply and electricity demand by RCPs scenarios and optimized ANN by the improved Pathfinder (IPF) algorithm. Energy 237:121621. doi:10.1016/j.energy.2021.121621.
  • Jiang, W., et al. 2022. Optimal economic scheduling of microgrids considering renewable energy sources based on energy hub model using demand response and improved water wave optimization algorithm. Journal of Energy Storage 55:105311. doi:10.1016/j.est.2022.105311.
  • Jui, J. J., and M. A. Ahmad. 2021. A hybrid metaheuristic algorithm for identification of continuous-time Hammerstein systems. Applied Mathematical Modelling 95:339–60. doi:10.1016/j.apm.2021.01.023.
  • Leng, H., X. Li, J. Zhu, H. Tang, Z. Zhang, and N. Ghadimi. 2018. A new wind power prediction method based on ridgelet transforms, hybrid feature selection and closed-loop forecasting. Advanced Engineering Informatics 36:20–30. doi:10.1016/j.aei.2018.02.006.
  • Li, G., P. Liu, C. Le, and B. Zhou. 2019. A novel hybrid meta-heuristic algorithm based on the cross-entropy method and firefly algorithm for global optimization. Entropy 21 (5):494. doi:10.3390/e21050494.
  • Liu, Y., W. Wang, and N. Ghadimi. 2017. Electricity load forecasting by an improved forecast engine for building level consumers. Energy 139:18–30. doi:10.1016/j.energy.2017.07.150.
  • Mahdinia, S., M. Rezaie, M. Elveny, N. Ghadimi, and N. Razmjooy. 2021. Optimization of PEMFC model parameters using meta-heuristics. Sustainability 13 (22):12771. doi:10.3390/su132212771.
  • Meng, Q., T. Liu, C. Su, H. Niu, Z. Hou, and N. Ghadimi. 2020. A single-phase transformer-less grid-tied inverter based on switched capacitor for PV application. Journal of Control, Automation and Electrical Systems 31 (1):257–70. doi:10.1007/s40313-019-00531-5.
  • Mir, M., M. Shafieezadeh, M. A. Heidari, and N. Ghadimi. 2020. Application of hybrid forecast engine based intelligent algorithm and feature selection for wind signal prediction. Evolving Systems 11 (4):559–73. doi:10.1007/s12530-019-09271-y.
  • Moldovan, D. 2020. Horse optimization algorithm: A novel bio-inspired algorithm for solving global optimization problems. In Computer Science On-line Conference, ed. R. Silhavy, 195–209. Springer.
  • Selem, S. I., H. M. Hasanien, and A. A. El‐Fergany. 2020. Parameters extraction of PEMFC’s model using manta rays foraging optimizer. International Journal of Energy Research 44 (6):4629–40. doi:10.1002/er.5244.
  • Shaheen, M. A., H. M. Hasanien, M. El Moursi, and A. A. El‐Fergany. 2021. Precise modeling of PEM fuel cell using improved chaotic MayFly optimization algorithm. International Journal of Energy Research 45 (13):18754–69. doi:10.1002/er.6987.
  • Simon, D. 2008. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation 12 (6):702–13. doi:10.1109/TEVC.2008.919004.
  • Sun, Z., D. Cao, Y. Ling, F. Xiang, Z. Sun, and F. Wu. 2021. Proton exchange membrane fuel cell model parameter identification based on dynamic differential evolution with collective guidance factor algorithm. Energy 216:119056. doi:10.1016/j.energy.2020.119056.
  • Tizhoosh, H. R. 2005. Opposition-based learning: A new scheme for machine intelligence. International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06), Vienna, Austria, vol. 1, pp. 695–701. IEEE.
  • Turgut, O. E., and M. T. Coban. 2016. Optimal proton exchange membrane fuel cell modelling based on hybrid teaching learning based optimization–differential evolution algorithm. Ain Shams Engineering Journal 7 (1):347–60. doi:10.1016/j.asej.2015.05.003.
  • Wu, Y.-C., W.-P. Lee, and C.-W. Chien. 2011. Modified the performance of differential evolution algorithm with dual evolution strategy. International conference on machine learning and computing, Singapore, vol. 3, pp. 57–63.
  • Xu, Y.-P., P. Ouyang, S.-M. Xing, L.-Y. Qi, H. Jafari, and H. Jafari. 2021. Optimal structure design of a PV/FC HRES using amended Water Strider Algorithm. Energy Reports 7:2057–67. doi:10.1016/j.egyr.2021.04.016.
  • Yang, S., and N. Wang. 2012. A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model. International Journal of Hydrogen Energy 37 (10):8465–76. doi:10.1016/j.ijhydene.2012.02.131.
  • Ye, M., X. Wang, and Y. Xu. 2009. Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. International Journal of Hydrogen Energy 34 (2):981–89. doi:10.1016/j.ijhydene.2008.11.026.
  • Yin, Z., and N. Razmjooy. 2020. PEMFC identification using deep learning developed by improved deer hunting optimization algorithm. International Journal of Power and Energy Systems 40 (2). doi:10.2316/J.2020.203-0189.
  • Zhang, J., M. Khayatnezhad, and N. Ghadimi. 2022. Optimal model evaluation of the proton-exchange membrane fuel cells based on deep learning and modified African vulture optimization algorithm. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (1):287–305. doi:10.1080/15567036.2022.2043956.
  • Zhang, G., C. Xiao, and N. Razmjooy. 2020. Optimal parameter extraction of PEM fuel cells by meta-heuristics. International Journal of Ambient Energy 43:1–10. doi:10.1080/01430750.2020.1745276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.