140
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on the effects of pre-oxidation on the pore structure and fractal characteristics of coal

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 7648-7660 | Received 05 Apr 2023, Accepted 07 Jun 2023, Published online: 13 Jun 2023

References

  • Ahmad, A. L., and N. N. N. Mustafa. 2006. Pore surface fractal analysis of palladium-alumina ceramic membrane using Frenkel-Halsey-Hill (FHH) model. Journal of Colloid and Interface Science 301:575–84. doi:10.1016/j.jcis.2006.05.041.
  • Bai, Z., C. Wang, J. Deng, F. Kang, and C. Shu. 2020. Effects of ionic liquids on the chemical structure and exothermic properties of lignite. Journal of Molecular Liquids 309:113019. doi:10.1016/j.molliq.2020.113019.
  • Bu, Y., H. Niu, H. Wang, T. Qiu, H. Chen, and D. Xue. 2023. Characteristics of lean oxygen combustion and dynamic microreaction process of water-soaked coal. Fuel 332:126010. doi:10.1016/j.fuel.2022.126010.
  • Carrott, P. J. M., A. I. Mcleod, and K. S. W. Sing. 1982. Application of the Frenkel-Halsey-Hill equation to multilayer isotherms of nitrogen on oxides at 77K. Studies in Surface Science and Catalysis 10:403–10. doi:10.1016/S0167-2991(09)61357-4.
  • Evans, R., U. M. B. Marconi, and P. Tarazona. 1986. Fluids in narrow pores: Adsorption, capillary condensation, and critical points. Journal of Chemical Physics 84:2376–99. doi:10.1063/1.450352.
  • Fan, L., X. Meng, J. Zhao, L. Tang, R. Chu, W. Li, G. Wu, X. Jiang, and Z. Miao. 2022. Pore Structure evolution and fractal analysis of Shenhua non-caking coal during low-temperature oxidation. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (3):6856–67. doi:10.1080/15567036.2022.2103213.
  • Fu, S., B. Tan, G. Cheng, H. Wang, X. Fang, Z. Li, M. Guo, and X. Zan. 2022. Molecular model construction of Chifeng lignite and analysis of adsorption mechanism of O2 at low temperature. Journal of Molecular Structure 134613:134613. doi:10.1016/j.molstruc.2022.134613.
  • Gao, D., L. Guo, F. Wang, L. Zhu, and Z. Gao. 2022. Investigation on thermal analysis and FTIR microscopic characteristics of artificially-oxidized coal and chronic naturally-oxidized coal during secondary oxidation. Fuel 327. doi:10.1016/j.fuel.2022.125151.
  • Gregg, S. J., and K. S. W. Sing. 1982. Adsorption, surface area and porosity. Salt Lake City: Academic Press. doi:10.1002/bbpc.19820861019.
  • Guo, H., L. Yuan, Y. Cheng, K. Wang, and C. Xu. 2019. Experimental investigation on coal pore and fracture characteristics based on fractal theory. Powder Technology 346:341–49. doi:10.1016/j.powtec.2019.02.026.
  • Huang, Q., S. Liu, B. Wu, G. Wang, G. Li, and Z. Guo. 2021. Role of VES-based fracturing fluid on gas sorption and diffusion of coal: An experimental study of Illinois basin coal. Process Safety and Environmental Protection 148:1243–53. doi:10.1016/j.psep.2021.03.002.
  • Kakei, K., S. Ozeki, T. Suzuki, and K. Kaneko. 1990. Multi-stage micropore filling mechanism of nitrogen on microporous and micrographitic carbons. Journal of the Chemical Society, Faraday Transactions 86:371–76. doi:10.1039/FT9908600371.
  • Khalili, N. R., P. Minzi, and G. Sandı́. 2000. Determination of fractal dimensions of solid carbons from gas and liquid phase adsorption isotherms. Carbon 38:573–88. doi:10.1016/S0008-6223(99)00143-8.
  • Liu, N., L. Sun, B. Qin, S. Zhang, and W. Du. 2021. Evolution of pore and fracture of coal under heating–freezing effects: An experimental study. Fuel 306. doi:10.1016/j.fuel.2021.121618.
  • Lu, X., M. Wang, X. Xue, Y. Xing, G. Shi, C. Shen, Y. Yang, and Y. Li. 2022. An novel experimental study on the thermorunaway behavior and kinetic characteristics of oxidation coal in a low temperature reoxidation process. Fuel 310:122162. doi:10.1016/j.fuel.2021.122162.
  • Mahamud, M. M., J. M. Menéndez, and A. Álvarez. 2019. Fractal analysis of CO2 and N2 adsorption data to assess textural changes during char gasification. Fuel Processing Technology 189:15–27. doi:10.1016/j.fuproc.2019.02.019.
  • Mahamud, M. M., and M. F. Novo. 2008. The use of fractal analysis in the textural characterization of coals. Fuel 87 (2):222–31. doi:10.1016/J.FUEL.2007.04.020.
  • Ni, G., S. Li, S. Rahman, M. Xun, H. Wang, Y. Xu, and H. Xie. 2020. Effect of nitric acid on the pore structure and fractal characteristics of coal based on the low-temperature nitrogen adsorption method. Powder Technology 367:506–16. doi:10.1016/j.powtec.2020.04.011.
  • Onifade, M., and B. Genc. 2020. A review of research on spontaneous combustion of coal. International Journal of Mining Science and Technology 30 (3):303–11. doi:10.1016/j.ijmst.2020.03.001.
  • Pan, R., C. Li, M. Yu, Z. Xiao, and D. Fu. 2020. Evolution patterns of coal micro-structure in environments with different temperatures and oxygen conditions. Fuel 261:116425. doi:10.1016/j.fuel.2019.116425.
  • Qi, L., X. Tang, Z. Wang, and X. Peng. 2017. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. International Journal of Mining Science and Technology 27 (2):371–77. doi:10.1016/j.ijmst.2017.01.005.
  • Stephen, B., P. H. Emmett, and E. Teller. 1938. Adsorption of gases in multimolecular layer. Journal of the American Chemical Society 60:309–19. doi:10.1021/ja01269a023.
  • Sun, L., C. Zhang, G. Wang, Q. Huang, and Q. Shi. 2022. Research on the evolution of pore and fracture structures during spontaneous combustion of coal based on CT 3D reconstruction. Energy 260. doi:10.1016/j.energy.2022.125033.
  • Wang, K., H. Dong, L. Wang, W. Zhao, Y. Wang, H. Guo, J. Zhang, L. Fan, and X. Zhao. 2023. Temperature-induced micropore structure alteration of raw coal and its implications for optimizing the degassing temperature in pore characterization. Energy 268:268. doi:10.1016/j.energy.2023.126668.
  • Wang, Z., Y. Cheng, Y. Qi, R. Wang, L. Wang, and J. Jiang. 2019. Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption. Powder Technology 350:15–25. doi:10.1016/j.powtec.2019.03.030.
  • Xu, M., L. Xin, W. Liu, X. Hu, W. Cheng, C. Li, and G. Wang. 2020. Study on the physical properties of coal pyrolysis in underground coal gasification channel. Powder Technology 376:573–92. doi:10.1016/j.powtec.2020.08.067.
  • Xue, D., X. Hu, W. Cheng, M. Wu, Z. Shao, Y. Li, Y. Zhao, and K. Zhang. 2020. Carbon dioxide sealing-based inhibition of coal spontaneous combustion: A temperature sensitive micro-encapsulated fire-retardant foamed gel. Fuel 266:117036. doi:10.1016/j.fuel.2020.117036.
  • Zhang, R., and S. Liu. 2017. Experimental and theoretical characterization of methane and CO2 sorption hysteresis in coals based on Langmuir desorption. International Journal of Coal Geology 171:49–60. doi:10.1016/j.coal.2016.12.007.
  • Zhang, Y., H. Wang, W. Du, K. Niu, and X. Wei. 2021. Temperature-programmed oxidation experiments on typical bituminous coal under inert conditions. Journal of Energy Resources Technology 143:032102. doi:10.1115/1.4048941.
  • Zhao, J., Y. Zhang, J. Song, T. Zhang, H. Ming, S. Lu, J. Deng, and C. Shu. 2022. Microstructure of coal spontaneous combustion in low-oxygen atmospheres at characteristic temperatures. Fuel 309. doi:10.1016/j.fuel.2021.122132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.