117
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Visual investigation on optimizing combustion characteristic of porous media burner combined with bluff body

ORCID Icon, &
Pages 7972-7986 | Received 28 Jul 2022, Accepted 08 Jun 2023, Published online: 15 Jun 2023

References

  • Akhtar, S., M. N. Khan, J. C. Kurnia, and T. Shamim. 2017. Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications. Applied Energy 192:134–45. doi:10.1016/j.apenergy.2017.01.097.
  • Ansari, M., and E. Amani. 2018. Micro-combustor performance enhancement using a novel combined baffle-bluff configuration. Chemical Engineering Science 175:243–56. doi:10.1016/j.ces.2017.10.001.
  • Bagheri, G., S. E. Hosseini, and M. A. Wahid. 2014. Effects of bluff body shape on the flame stability in premixed micro-combustion of hydrogen–air mixture. Applied Thermal Engineering 67 (1–2):266–72. doi:10.1016/j.applthermaleng.2014.03.040.
  • Bubnovich, V., H. Hernandez, M. Toledo, and C. Flores. 2021. Experimental investigation of flame stability in the premixed propane-air combustion in two-section porous media burner. Fuel 291:120117. doi:10.1016/j.fuel.2020.120117.
  • Cai, L., J. E, J. Li, J. Ding, and B. Luo. 2023. A comprehensive review on combustion stabilization technologies of micro/meso-scale combustors for micro thermophotovoltaic systems: Thermal, emission, and energy conversion. Fuel 335:126660. doi:10.1016/j.fuel.2022.126660.
  • Chen, X., J. Li, D. Zhao, M. T. Rashid, X. Zhou, and N. Wang. 2021. Effects of porous media on partially premixed combustion and heat transfer in meso-scale burners fuelled with ethanol. Energy 224:120191. doi:10.1016/j.energy.2021.120191.
  • Chen, X., J. Li, D. Zhao, A. Song, X. Zhou, and N. Wang. 2021. Experimental investigation on propagation characteristics of n-heptane/air combustion wave in foamed porous media. Fuel 306:121742. doi:10.1016/j.fuel.2021.121742.
  • Chou, S. K., W. M. Yang, J. Li, and Z. W. Li. 2010. Porous media combustion for micro thermophotovoltaic system applications. Applied Energy 87 (9):2862–67. doi:10.1016/j.apenergy.2009.06.039.
  • Dai, H., and H. Dai. 2022a. Efficient lean combustion in a novel porous medium burner with the integrated of pellets and ceramic foam: Experimental study of flame propagation and stability. Combustion and Flame 244:112244. doi:10.1016/j.combustflame.2022.112244.
  • Dai, H., and H. Dai. 2022b. Green hydrogen production based on the co-combustion of wood biomass and porous media. Applied Energy 324:119779. doi:10.1016/j.apenergy.2022.119779.
  • Dai, H., H. Dai, P. Yang, Z. Wang, Z. Song, and X. Wang, 2021. Combustion characteristics of a self-preheating burner with gradually-varied porous media. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–15
  • Devi, S., N. Sahoo, and P. Muthukumar. 2020. Experimental studies on biogas combustion in a novel double layer inert porous radiant burner. Renewable Energy 149:1040–52. doi:10.1016/j.renene.2019.10.092.
  • Dunnmon, J., S. Sobhani, M. Wu, R. Fahrig, and M. Ihme, 2017. An investigation of internal flame structure in porous media combustion via X-ray computed tomography. Proceedings of the Combustion Institute 36, 4399–4408
  • Fan, A., J. Wan, Y. Liu, B. Pi, H. Yao, and W. Liu. 2014. Effect of bluff body shape on the blow-off limit of hydrogen/air flame in a planar micro-combustor. Applied Thermal Engineering 62 (1):13–19. doi:10.1016/j.applthermaleng.2013.09.010.
  • Fan, A., J. Wan, Y. Liu, B. Pi, H. Yao, K. Maruta, and W. Liu. 2013. The effect of the blockage ratio on the blow-off limit of a hydrogen/air flame in a planar micro-combustor with a bluff body. International Journal of Hydrogen Energy 38 (26):11438–45. doi:10.1016/j.ijhydene.2013.06.100.
  • Feng, X., L. Jiang, D. Li, S. Tian, X. Zhu, H. Wang, C. He, and K. Li. 2022. Progress and key challenges in catalytic combustion of lean methane. Journal of Energy Chemistry 75:173–215. doi:10.1016/j.jechem.2022.08.001.
  • Fernández, J., P. Marín, F. V. Díez, and S. Ordóñez. 2016. Combustion of coal mine ventilation air methane in a regenerative combustor with integrated adsorption: Reactor design and optimization. Applied Thermal Engineering 102:167–75. doi:10.1016/j.applthermaleng.2016.03.171.
  • Fursenko, R. V., I. A. Yakovlev, E. S. Odintsov, S. D. Zambalov, and S. S. Minaev. 2022. Pore-scale flame dynamics in a one-layer porous burner. Combustion and Flame 235:111711. doi:10.1016/j.combustflame.2021.111711.
  • Gentillon, P., J. Southcott, Q. N. Chan, and R. A. Taylor. 2018. Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina. Applied Energy 229:736–44. doi:10.1016/j.apenergy.2018.08.048.
  • He, Z., Y. Yan, R. Fang, Z. Ou, Z. Zhang, Z. Yang, and Z. Zhang. 2021. Numerical investigation of a novel micro combustor with a central and bilateral slotted blunt body. International Journal of Hydrogen Energy 46 (45):23564–79. doi:10.1016/j.ijhydene.2020.11.212.
  • Li, Y., S. Pan, S. Ning, L. Shao, Z. Jing, and Z. Wang. 2022. Coal measure metallogeny: Metallogenic system and implication for resource and environment. Science China Earth Sciences 65 (7):1211–28. doi:10.1007/s11430-021-9920-4.
  • Liu, H., D. Wu, M. Xie, H. Liu, and Z. Xu. 2019. Experimental and numerical study on the lean premixed filtration combustion of propane/air in porous medium. Applied Thermal Engineering 150:445–55. doi:10.1016/j.applthermaleng.2018.12.155.
  • Liu, H., D. Wu, M. Xie, S. Wang, and L. Liu. 2019. Experimental study on the pre-evaporation pulse combustion of liquid fuel within a porous medium burner. Experimental Thermal and Fluid Science 103:286–94. doi:10.1016/j.expthermflusci.2019.01.023.
  • Li, Y., J. H. Yang, Z. J. Pan, and W. S. Tong. 2020. Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images, 260. FUEL.
  • Mustafa, K. F., S. Abdullah, M. Z. Abdullah, and K. Sopian. 2017. A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems. Renewable and Sustainable Energy Reviews 71:572–84. doi:10.1016/j.rser.2016.12.085.
  • Peng, Q., J. E, Z. Zhang, W. Hu, and X. Zhao. 2018. Investigation on the effects of front-cavity on flame location and thermal performance of a cylindrical micro combustor. Applied Thermal Engineering 130:541–51. doi:10.1016/j.applthermaleng.2017.11.016.
  • Peng, Q., B. Xie, W. Yang, S. Tang, Z. Li, P. Zhou, and N. Luo. 2021. Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic. Renewable Energy 174:391–402. doi:10.1016/j.renene.2021.04.108.
  • Peng, Q., W. Yang, J. E, Z. Li, H. Xu, G. Fu, and S. Li. 2021. Investigation on H2/air combustion with C3H8 addition in the combustor with part/full porous medium. Energy Conversion and Management 228:113652. doi:10.1016/j.enconman.2020.113652.
  • Peng, Q., W. Yang, J. E, H. Xu, Z. Li, W. Yu, Y. Tu, and Y. Wu. 2019. Experimental investigation on premixed hydrogen/air combustion in varied size combustors inserted with porous medium for thermophotovoltaic system applications. Energy Conversion and Management 200:112086. doi:10.1016/j.enconman.2019.112086.
  • Qian, P., and M. Liu. 2022. Influencing factors of wall temperature and flame stability of micro-combustors in micro-thermophotovoltaic and micro-thermoelectric systems. Fuel 310:122436. doi:10.1016/j.fuel.2021.122436.
  • Qian, P., M. Liu, X. Li, F. Xie, Z. Huang, C. Luo, and X. Zhu. 2020. Effects of bluff-body on the thermal performance of micro thermophotovoltaic system based on porous media combustion. Applied Thermal Engineering 174:115281. doi:10.1016/j.applthermaleng.2020.115281.
  • Qian, P., X. Yuan, Z. Chen, C. Luo, Z. Huang, X. Zhu, and M. Liu. 2021. Experimental study on a high efficient and ultra-lean burn meso-scale thermoelectric system based on porous media combustion. Energy Conversion and Management 234:113966. doi:10.1016/j.enconman.2021.113966.
  • Quaye, E. K., J. Pan, Q. Lu, Y. Zhang, and Y. Wang. 2023. Combustion optimization in consolidated porous media for thermo-photovoltaic system application using response surface methodology. International Journal of Thermal Sciences 184:107950. doi:10.1016/j.ijthermalsci.2022.107950.
  • Shi, J., B. Li, N. Li, Y. Xia, Y. Xu, and H. Liu. 2017. Experimental and numerical investigations on diffusion filtration combustion in a plane-parallel packed bed with different packed bed heights. Applied Thermal Engineering 127:245–55. doi:10.1016/j.applthermaleng.2017.07.207.
  • Shi, J. R., B. W. Li, N. Li, Y. F. Xia, Y. N. Xu, and H. S. Liu. 2017. Experimental and numerical investigations on diffusion filtration combustion in a plane-parallel packed bed with different packed bed heights. Applied Thermal Engineering 127:245–55. doi:10.1016/j.applthermaleng.2017.07.207.
  • Tong, Y., X. Liu, S. Chen, Z. Li, and J. Klingmann. 2018. Effects of the position of a bluff-body on the diffusion flames: A combined experimental and numerical study. Applied Thermal Engineering 131:507–21. doi:10.1016/j.applthermaleng.2017.12.031.
  • Torabi, M., N. Karimi, M. Torabi, G. P. Peterson, and C. J. Simonson. 2020. Generation of entropy in micro thermofluidic and thermochemical energy systems-A critical review. International Journal of Heat and Mass Transfer 163:120471. doi:10.1016/j.ijheatmasstransfer.2020.120471.
  • Wang, G., P. Tang, Y. Li, J. Xu, and F. Durst. 2019. Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner. Energy 170:1279–88. doi:10.1016/j.energy.2018.12.128.
  • Wu, Y., Q. Peng, M. Yang, J. Shan, and W. Yang. 2021. Entropy generation analysis of premixed hydrogen–air combustion in a micro combustor with porous medium. Chemical Engineering & Processing - Process Intensification 168:108566. doi:10.1016/j.cep.2021.108566.
  • Xie, B., Q. Peng, Z. Shi, J. Wei, Z. Kang, D. Wei, X. Tian, and G. Fu. 2023. Investigation of CH4 and porous media addition on thermal and working performance in premixed H2/air combustion for micro thermophotovoltaic. Fuel 339:127444. doi:10.1016/j.fuel.2023.127444.
  • Yang, S. I., and D. L. Hsu. 2013. Heat-transfer mechanisms of lean premixed CH4/air flame in a ceramic granular bed burner. Combustion and Flame 160 (3):692–703. doi:10.1016/j.combustflame.2012.11.019.
  • Yan, Y., F. Xu, Q. Xu, L. Zhang, Z. Yang, and J. Ran. 2019. Influence of controllable slit width and angle of controllable flow on hydrogen/air premixed combustion characteristics in micro combustor with both sides–slitted bluff body. International Journal of Hydrogen Energy 44 (36):20482–92. doi:10.1016/j.ijhydene.2019.06.019.
  • Yan, Y., H. Yan, L. Zhang, L. Li, J. Zhu, and Z. Zhang. 2018. Numerical investigation on combustion characteristics of methane/air in a micro-combustor with a regular triangular pyramid bluff body. International Journal of Hydrogen Energy 43 (15):7581–90. doi:10.1016/j.ijhydene.2018.02.168.
  • Zhang, Y., Q. Lu, B. Fan, L. Long, E. K. Quaye, and J. Pan. 2023. Effect of multiple bluff bodies on hydrogen/air combustion characteristics and thermal properties in micro combustor. International Journal of Hydrogen Energy 48 (10):4064–72. doi:10.1016/j.ijhydene.2022.10.268.
  • Zheng, C., L. Cheng, T. Li, Z. Luo, and K. Cen. 2010. Filtration combustion characteristics of low calorific gas in SiC foams. Fuel 89 (9):2331–37. doi:10.1016/j.fuel.2009.12.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.