149
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Novel approach for efficient operation and reduced harmful emissions on a dual-fuel research engine propelled with hydrogen-enriched natural gas and diesel

, , ORCID Icon, ORCID Icon, & ORCID Icon
Pages 8218-8238 | Received 07 Nov 2022, Accepted 06 Apr 2023, Published online: 27 Jun 2023

References

  • Açikgöz, B., C. Çelik, H. S. Soyhan, B. Gökalp, and B. Karabaʇ. 2015. Emission characteristics of an hydrogen-CH4 fuelled spark ignition engine. Fuel 159 (x):298–307. doi:10.1016/j.fuel.2015.06.043.
  • Adhiseshan, J. S., S. Abirama Sundaram, and L. Saravanakumar. 2019. Experimental investigations of a single cylinder four stroke diesel engine using modified piston bowl fuelled with Jojoba biodiesel blend. Materials Today: Proceedings Internet 46:9844–49. Available from. doi:10.1016/j.matpr.2020.11.414.
  • Babu R Kumar, Jayabal R and Devarajan Y. 2023. Mitigating carcinogenic smoke opacity in a light-duty diesel engine by utilizing cyclohexanol, polyethylene glycol, and 2-methoxyethanol. Environ Sci Pollut Res, 10.1007/s11356-023-26020-6
  • Biswajeet, N., T. Jackson Singh, A. T. Hoang, and ATH. 2021. Experimental analysis of performance and emission of a turbocharged diesel engine operated in dual-fuel mode fueled with bamboo leaf-generated gaseous and waste palm oil biodiesel/diesel fuel blends. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–19. 10.1080/15567036.2021.2009595
  • 2022. B p. l. c. bp statistical review of world energy globally consistent data on world energy markets. The review is one of the most widely respected the Statistical of publications World Energy analyses and Review energy used from by the prior the Review academia, ha [Internet]. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf
  • Bui, V. G., T. M. Tu Bui, A. T. Hoang, S. Nižetic, T. X. Nguyen Thi, and A. V. Vo. 2021. Hydrogen-enriched biogas premixed charge combustion and emissions in direct injection and indirect injection diesel dual fueled engines: A comparative study. Journal of Energy Resources Technology 143 (12):1–13. doi:10.1115/1.4051574.
  • Bui, V. G., T. M. Tu Bui, H. C. Ong, S. Nižetić, V. H. Bui, T. T. Xuan Nguyen, A. E. Atabani, L. Štěpanec, L. H. Phu Pham, A. T. Hoang, et al. Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system. Energy 252: 124052. 2022 Aug 1. 10.1016/j.energy.2022.124052
  • Choubey G, Gaud P, Mahmood Fatah A and Devarajan Y. 2022. Numerical investigation on geometric sensitivity and flame stabilisation mechanism in H2 fueled two-strut based scramjet combustor. Fuel, 312 122847 10.1016/j.fuel.2021.122847
  • Choubey G, Solanki M, Patel O, Devarajan Y and Huang W. 2023. Effect of different strut design on the mixing performance of H2 fueled two-strut based scramjet combustor. Fuel, 351 128972 10.1016/j.fuel.2023.128972
  • Dasrath, D. K., R. Biwalkar, S. Singh, and W. F. Northrop. 2021. Bowl piston geometry as an alternative to enlarged crevice pistons for rapid compression machines. Proceedings of the Combustion Institute: International Symposium on Combustion 38 (4):5723–31. doi:10.1016/j.proci.2020.10.005.
  • De Simio, L., and S. Iannaccone. 2019. Gaseous and particle emissions in low-temperature combustion diesel–HCNG dual-fuel operation with double pilot injection. Appl Energy Internet 253(July):113602. doi:10.1016/j.apenergy.2019.113602.
  • Di Blasio, G., C. Beatrice, V. Fraioli, M. Migliaccio, and G. Belgiorno. 2015. Experimental evaluation of compression ratio influence on the performance of a dual-fuel methane-diesel light-duty engine. SAE International Journal of Engines 8 (5):2253–67. doi:10.4271/2015-24-2460.
  • Dimitriou, P., M. Kumar, T. Tsujimura, and Y. Suzuki. 2018. Combustion and emission characteristics of a hydrogen-diesel dual-fuel engine. International Journal of Hydrogen Energy Internet 43 (29):13605–17. doi:10.1016/j.ijhydene.2018.05.062.
  • Egúsquiza, J. C., S. L. Braga, and C. V. M. Braga. 2009. Performance and gaseous emissions characteristics of a natural gas/diesel dual fuel turbocharged and aftercooled engine. Journal of the Brazilian Society of Mechanical Sciences and Engineering 31 (2):142–50. doi:10.1590/S1678-58782009000200007.
  • Ekin, F., O. A. Ozsoysal, and H. Arslan. 2022. The effect of using hydrogen at partial load in a diesel-natural gas dual fuel engine. International Journal of Hydrogen Energy Internet 47 (42):18532–50. doi:10.1016/j.ijhydene.2022.03.287.
  • Fon, L. C., Y. Pang, H. Wu, J. J. Hernández, S. Zhang, and F. Liu. 2020. The optical investigation of hydrogen enrichment effects on combustion and soot emission characteristics of CNG/diesel dual-fuel engine. Fuel Internet 280(February):118639. doi:10.1016/j.fuel.2020.118639.
  • Gómez Montoya, J. P., A. A. Amell, and D. B. Olsen. 2016. Prediction and measurement of the critical compression ratio and methane number for blends of biogas with methane, propane and hydrogen. Fuel 186:168–75. doi:10.1016/j.fuel.2016.08.064.
  • Gurusamy M, Vellaiyan S, Kandasamy M and Devarajan Y. 2023. Optimization of process parameters to intensify the yield rate of biodiesel derived from waste and inedible Carthamus lanatus (L.) Boiss. seeds and examine the fuel properties with pre-heated water emulsion. Sustainable Chemistry and Pharmacy, 33 101137 10.1016/j.scp.2023.101137
  • Han, W., Z. Sun, A. Scholtissek, and C. Hasse. Machine Learning of ignition delay times under dual-fuel engine conditions. Fuel. 288:119650. 2021 Mar 15. 10.1016/j.fuel.2020.119650.
  • Huang, H., Z. Zhu, Y. Chen, Y. Chen, D. Lv, J. Zhu, and T. Ouyang. 2019. Experimental and numerical study of multiple injection effects on combustion and emission characteristics of natural gas–diesel dual-fuel engine. Energy Conversion & Management Internet 183(X):84–96. doi:10.1016/j.enconman.2018.12.110.
  • Hydrogen Council. Hydrogen Insights. 2021. February 58. https://hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021.pdf.
  • Kalsi, S. S., and K. A. Subramanian. 2017. Experimental investigations of effects of hydrogen blended CNG on performance, combustion and emissions characteristics of a biodiesel fueled reactivity controlled compression ignition engine (RCCI). International Journal of Hydrogen Energy Internet 42 (7):4548–60. doi:10.1016/j.ijhydene.2016.12.147.
  • Karimi, M., X. Wang, J. Hamilton, M. Negnevitsky, and S. Lyden. 2021. Status, challenges and opportunities of dual fuel hybrid approaches-a review. International Journal of Hydrogen Energy Internet 46 (70):34924–57. doi:10.1016/j.ijhydene.2021.08.008.
  • Khan, M. I., T. Yasmin, and A. Shakoor. 2015. Technical overview of compressed natural gas (CNG) as a transportation fuel. Renewable and Sustainable Energy Reviews 51:785–97. doi:10.1016/j.rser.2015.06.053.
  • Lather, R. S., and L. M. Das. 2019. Performance and emission assessment of a multi-cylinder S.I engine using CNG & HCNG as fuels. International Journal of Hydrogen Energy Internet 44 (38):21181–92. doi:10.1016/j.ijhydene.2019.03.137.
  • Lounici, M. S., M. A. Benbellil, K. Loubar, D. C. Niculescu, and M. Tazerout. 2017. Knock characterization and development of a new knock indicator for dual-fuel engines. Energy 141:2351–61. doi:10.1016/j.energy.2017.11.138.
  • Lounici, M. S., K. Loubar, L. Tarabet, M. Balistrou, D. C. Niculescu, and M. Tazerout. 2014. Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions. Energy 64:200–11. Internet doi:10.1016/j.energy.2013.10.091.
  • Maji A and Choubey G. 2020. Improvement of heat transfer through fins: A brief review of recent developments. Heat Transfer, 49(3), 1658–1685. 10.1002/htj.21684
  • Mittal, M., R. Donahue, P. Winnie, and A. Gillette. 2015. Exhaust emissions characteristics of a multi-cylinder 18.1-L diesel engine converted to fueled with natural gas and diesel pilot. Journal of the Energy Institute Internet 88(3):275–83. doi:10.1016/j.joei.2014.09.003.
  • Mittal, G., and M. Gwalwanshi. 2021. Influence of reentrant piston bowl geometry on combustion in CI engine. Materials Today: Proceedings 46:11011–14. Internet doi:10.1016/j.matpr.2021.02.098.
  • N B, D Y, T R and Selvarajan S. 2023. Studies on enhancing the heat transfer rate of a multitemperature phase change materials-integrated thermal storage tank. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 7578–7589. 10.1080/15567036.2023.2222682
  • Nieman, D. E., A. P. Morris, J. T. Miwa, and B. D. Denton. 2019. Methods of improving combustion efficiency in a high-efficiency, lean burn dual-fuel heavy-duty engine. SAE Technical Paper 2019 (Janua(January)):1–11.
  • Nieman, D. E., A. P. Morris, G. D. Neely, M. A. MJ. 2019. Utilizing multiple combustion modes to increase efficiency and achieve full load dual-fuel operation in a heavy-duty engine. SAE Tech Pap Accessed Apr 2, 2019. [Internet] https://www.sae.org/publications/technical-papers/content/2019-01-1157/.
  • Oni, B. A., S. E. Sanni, A. J. Ibegbu, and A. A. Aduojo. 2021. Experimental optimization of engine performance of a dual-fuel compression-ignition engine operating on hydrogen-compressed natural gas and Moringa biodiesel. Energy Reports 7:607–19. Internet doi:10.1016/j.egyr.2021.01.019.
  • Ouchikh, S., M. S. Lounici, L. Tarabet, K. Loubar, and M. Tazerout. 2019. Effect of natural gas enrichment with hydrogen on combustion characteristics of a dual fuel diesel engine. International Journal of Hydrogen Energy Internet 44 (26):13974–87. doi:10.1016/j.ijhydene.2019.03.179.
  • Rainer, X. S. 2012. Important properties of gas turbine fuels. Pipeline & Gas Journal 239:6.
  • Roy, P. S., C. Ryu, and C. S. Park. 2018. Predicting Wobbe Index and methane number of a renewable natural gas by the measurement of simple physical properties. Fuel 224 (March):121–27. doi:10.1016/j.fuel.2018.03.074.
  • Senthil Kumar, M., G. Nataraj, and S. Arul Selvan. 2017. A comprehensive assessment on the effect of high octane fuels induction on engine’s combustion behaviour of a Mahua oil based dual fuel engine. Fuel 199:176–84. doi:10.1016/j.fuel.2017.02.080.
  • Sharma D, Pandey K, Debbarma A and Choubey G. 2017. Numerical Investigation of heat transfer enhancement of SiO 2 -water based nanofluids in Light water nuclear reactor. Materials Today: Proceedings, 4(9), 10118–10122. 10.1016/j.matpr.2017.06.332
  • Shen, Z., X. Wang, H. Zhao, B. Lin, Y. Shen, and J. Yang. 2021. Numerical investigation of natural gas-diesel dual-fuel engine with different piston geometries and radial clearances. Energy Internet 220:119706. doi:10.1016/j.energy.2020.119706.
  • Shojae, K., M. Mahdavian, and E. Baghshani. 2022. Investigation of piston bowl geometry, injection timing, and EGR mass fraction to improve the performance of ISM 370 diesel engine. Fuel Internet 324 (PB):124422. doi:10.1016/j.fuel.2022.124422.
  • Technavio. 2021. Dual fuel engine market by end-user and geography - Forecast and analysis 2021-2025 [Internet]. https://www.technavio.com/report/dual-fuel-engine-market-industry-analysis
  • ToolBox, E. Fuels - Higher and lower calorific values [Internet]. The Engineering ToolBox. https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html.
  • Veerasangappa Khandal, S., Ümit Ağbulut,Asif AfzalMohsen Sharifpur, Kaladgi Abdul Razak NK. Energy Science Engineering - 2022 - Khandal - Influences of hydrogen addition from different dual‐fuel modes on engine.pdf.
  • Veerasangappa, S., K. Ümit, A. Asif, M. Sharifpur, K. Abdul, and R. Nima. 2022. Influences of hydrogen addition from different dual- fuel modes on engine behaviors. Energy Science and Engineering 10 (3):881–91. doi:10.1002/ese3.1065.
  • Vellaiyan S, Kuppusamy S, Chandran D, Raviadaran R and Devarajan Y. (2023). Optimisation of fuel modification parameters for efficient and greener energy from diesel engine powered by water-emulsified biodiesel with cetane improver. Case Studies in Thermal Engineering, 48 103129 10.1016/j.csite.2023.103129
  • Veza, I., M. F. Muhamad Said, Z. Abdul Latiff, and M. A. Abas. 2021 Nov 14 Application of Elman and Cascade neural network (ENN and CNN) in comparison with adaptive neuro fuzzy inference system (ANFIS) to predict key fuel properties of ABE-diesel blendsInternational Journal of Green Energy Internet 1814:1510–22. doi:10.1080/15435075.2021.1911807.
  • Xu, L., X. S. Bai, Y. Li, M. Treacy, C. Li, P. Tunestål, M. Tunér, and X. Lu. 2020. Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions. Applied Energy Internet 280(September):115920. doi:10.1016/j.apenergy.2020.115920.
  • Xu, G., A. García, M. Jia, and J. Monsalve-Serrano. 2021. Computational optimization of the piston bowl geometry for the different combustion regimes of the dual-mode dual-fuel (DMDF) concept through an improved genetic algorithm. Energy Conversion and Management Internet 246(August):114658. doi:10.1016/j.enconman.2021.114658.
  • Yang, B., L. Wang, L. Ning, and K. Zeng. 2016. Effects of pilot injection timing on the combustion noise and particle emissions of a diesel/natural gas dual-fuel engine at low load. Applied Thermal Engineering Internet 102(x):822–28. doi:10.1016/j.applthermaleng.2016.03.126.
  • Yang, B., C. Xi, X. Wei, K. Zeng, and M. C. Lai. 2015. Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load. Appl Energy Internet 143:130–37. doi:10.1016/j.apenergy.2015.01.037.
  • Yousefi, A., H. Guo, and M. Birouk. 2019. Effect of diesel injection timing on the combustion of natural gas/diesel dual-fuel engine at low-high load and low-high speed conditions. Fuel 235 (June 2018):838–46. doi:10.1016/j.fuel.2018.08.064.
  • Zarenezhad Ashkezari, A. 2022. Numerical analysis of performance and emissions behavior of a bi-fuel engine with compressed natural gas enriched with hydrogen using variable compression ratio strategy. International Journal of Hydrogen Energy Internet 47 (19):10762–76. doi:10.1016/j.ijhydene.2022.01.129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.