324
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Utilization of biomass and waste resources for renewable hydrogen production: A comprehensive study

ORCID Icon, ORCID Icon &
Pages 8553-8567 | Received 20 Mar 2023, Accepted 06 Jun 2023, Published online: 03 Jul 2023

References

  • Adams, P. 2011. An assessment of UK bioenergy production, resource availability, biomass gasification, and life cycle environmental impacts P.W.R. Adams University of Bath, Department of Mechanical Engineering.
  • Ali, D. A., M. A. Gadalla, O. Y. Abdelaziz, C. P. Hulteberg, and F. H. Ashour. 2017. Co-gasification of coal and biomass wastes in an entrained flow gasifier: Modelling, simulation and integration opportunities. Journal of Natural Gas Science & Engineering 37:126–37. doi:10.1016/j.jngse.2016.11.044.
  • Ali, A. M., M. Inayat, A. A. Zahrani, K. Shahzad, M. Shahbaz, S. A. Sulaiman, and H. Sadig. 2022. Process optimization and economic evaluation of air gasification of Saudi Arabian date palm fronds for H2-rich syngas using response surface methodology. Fuel 316:123359. doi:10.1016/j.fuel.2022.123359.
  • Arena, U. 2012. Process and technological aspects of municipal solid waste gasification. A review. Waste Management 32 (4):625–39. doi:10.1016/j.wasman.2011.09.025.
  • Arena, U., F. Di Gregorio, C. Amorese, and M. L. Mastellone. 2011. A techno-economic comparison of fluidized bed gasification of two mixed plastic wastes. Waste Management 31 (7):1494–504. doi:10.1016/j.wasman.2011.02.004.
  • Baratieri, M., P. Baggio, L. Fiori, and M. Grigiante. 2008. Biomass as an energy source: Thermodynamic constraints on the performance of the conversion process. Bioresource Technology 99 (15):7063–73. doi:10.1016/j.biortech.2008.01.006.
  • Burulday, M. E., M. S. Mert, and N. Javani. 2022. Thermodynamic analysis of a parabolic trough solar power plant integrated with a biomass-based hydrogen production system. International Journal of Hydrogen Energy 47 (45):19481–501. doi:10.1016/j.ijhydene.2022.02.163.
  • Cheng, H., Y. Zhang, A. Meng, and Q. Li. Municipal solid waste fueled power generation in China: A case study of waste-to-energy in Changchun city. Environmental Science & Technology 41(21):2007 Nov 1 7509–15. doi:10.1021/es071416g.
  • China Standardization Administration. 2008. municipal solid waste incinerator and boiler (GB/T 18750–2008). Beijing: China Standardization Administration.
  • De Jong, W., J. R. van Ommen, W. De Jong, and J. R. Van Ommen. 2014. Biomass as a sustainable energy source for the future: Fundamentals of conversion processes. John Wiley & Sons. doi: 10.1002/9781118916643.
  • Department of Energy, DOE, United States of America. 2016. International energy outlook 2016 with projections to 2040, U.S. In Energy information administration office of energy analysis U.S, 290 20585. Washington DC, United States of America: Department of Energy.
  • Dincer, I., N. Javani, and G. K. Karayel. 2021. Hydrogen farm concept: A perspective for Turkey. International Journal of Energy Research 45 (13):18309–17. doi:10.1002/er.7086.
  • Edenhofer, O., R. PichsMadruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, et al. 2012. Eds. Renewable energy sources and climate change mitigation: special report of the intergovernmental panel on climate change. Cambridge University Press 1088. 10.1017/CBO9781139151153.
  • European Parliament and the Council, European Union. 2001. Directive 2001/77/EC of the European parliament and of the council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market. Brussels: European Parliament and the Council.
  • European Parliament and the Council, European Union. 2009. Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC. Brussels: European Parliament and the Council
  • European Union Law, Comission of European Communities. 2007. An energy policy for Europe, commission of the European communities. Brussels.
  • Fiorese, G., M. Catenacci, V. Bosetti, and E. Verdolini. 2014. The power of biomass: Experts disclose the potential for success of bioenergy technologies. Energy Policy 65:94–114. doi:10.1016/j.enpol.2013.10.015.
  • Foust, T. D., A. Aden, A. Dutta, and S. Phillips. 2009. An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose 16 (4):547–65. doi:10.1007/s10570-009-9317-x.
  • Gondal, I. A., S. A. Masood, and R. Khan. 2018. Green hydrogen production potential for developing a hydrogen economy in Pakistan. International Journal of Hydrogen Energy 43 (12):6011–39. doi:10.1016/j.ijhydene.2018.01.113.
  • Hayashi, J. I., S. Hosokai, and N. Sonoyama. 2006. Gasification of low-rank solid fuels with thermochemical energy recuperation for hydrogen production and power generation. Process Safety and Environmental Protection 84 (6):409–19. doi:10.1205/psep06004.
  • ISWA, 2013. Waste-to-energy state-of-the-art-report statistics, sixth edition with revision. International Solid Waste Association.
  • Japan, M. O. E., 2015. The present situation of solid waste incineration facilities in the year 2013. ministry of the environment of japan. Website, visited 03.01, 2022, from http://www.env.go.jp/recycle/waste_tech/ippan/h25/data/seibi/facility/01.xls
  • Karayel, G. K., N. Javani, and I. Dincer. 2021. Green hydrogen production potential for Turkey with solar energy. International Journal of Hydrogen Energy 47(45):19354–64. doi:10.1016/j.ijhydene.2021.10.240.In Press.
  • McKendry, P. 2002. Energy production from biomass (part 3): Gasification technologies. Bioresource Technology 83 (1):55–63. doi:10.1016/S0960-8524(01)00120-1.
  • Michaels, 2014, ERC directory of waste-to-energy facilities, energy recovery council, U.S.
  • Ministry of Energy and Natural Resources, Directorate of renewable energy, website, visited 03.01, 2022, from: https://bepa.enerji.gov.tr/.
  • Mousdale, D. M. 2008. Biofuels: Biotechnology, chemistry, and sustainable development. CRC press.
  • Mueller-Langer, F., E. Tzimas, M. Kaltschmitt, and S. Peteves. 2007. Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. International Journal of Hydrogen Energy 32 (16):3797–810. doi:10.1016/j.ijhydene.2007.05.027.
  • Obey, D. R. 2009a. American recovery and reinvestment act, United States congress. https://www.congress.gov/bill/111th-congress/house-bill/1/text
  • Panel on Climate Change, I. 2007. IPCC, Intergovernmental Panel on Climate Change Climate change 2007: mitigation of climate change. contribution of working group iii to the fourth assessment report of the intergovernmental panel on climate change. eds. Cambridge University Press. Cambridge, UK: 851. 10.1017/CBO9780511546013.
  • Parsa, S., S. Jafarmadar, E. Neshat, and N. Javani. 2022. Thermodynamic analysis of a novel biomass-driven trigeneration system using different biomass resources. Biomass Conversion and Biorefinery 1–7. doi:10.1007/s13399-022-02953-9.
  • Puga, A. V. 2016. Photocatalytic production of hydrogen from biomass-derived feedstocks. Coordination Chemistry Reviews 315:1–66. doi:10.1016/j.ccr.2015.12.009.
  • Quintero-Coronel, D. A., Y. A. Lenis-Rodas, L. Corredor, P. Perreault, A. Bula, and A. Gonzalez-Quiroga. 2022. Co-gasification of biomass and coal in a top-lit updraft fixed bed gasifier: Syngas composition and its interchangeability with natural gas for combustion applications. Fuel 316:123394. doi:10.1016/j.fuel.2022.123394.
  • Safari, F., and I. Dincer. 2019. Development and analysis of a novel biomass-based integrated system for multigeneration with hydrogen production. International Journal of Hydrogen Energy 44 (7):3511–26. doi:10.1016/j.ijhydene.2018.12.101.
  • Salam, M. A., K. Ahmed, N. Akter, T. Hossain, and B. Abdullah. 2018. A review of hydrogen production via biomass gasification and its prospect in Bangladesh. International Journal of Hydrogen Energy 43 (32):14944–73. doi:10.1016/j.ijhydene.2018.06.043.
  • Schmitt, E., R. Bura, R. Gustafson, J. Cooper, and A. Vajzovic. 2012. Converting lignocellulosic solid waste into ethanol for the State of Washington: An investigation of treatment technologies and environmental impacts. Bioresource Technology 104:400–09. doi:10.1016/j.biortech.2011.10.094.
  • Sigal, A., E. P. M. Leiva, and C. R. Rodríguez. 2014. Assessment of the potential for hydrogen production from renewable resources in Argentina. International Journal of Hydrogen Energy 39 (16):8204–14. doi:10.1016/j.ijhydene.2014.03.157.
  • Sołowski, G., M. S. Shalaby, H. Abdallah, A. M. Shaban, and A. Cenian. 2018. Production of hydrogen from biomass and its separation using membrane technology. Renewable and Sustainable Energy Reviews 82:3152–67. doi:10.1016/j.rser.2017.10.027.
  • Sorgulu, F., and I. Dincer. 2021. Development of a hythane based cogeneration system integrated with gasification and landfill subsystems. Energy 215:119109. doi:10.1016/j.energy.2020.119109.
  • Taamallah, S., K. Vogiatzaki, F. M. Alzahrani, E. M. Mokheimer, M. A. Habib, and A. F. Ghoniem. 2015. Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations. Applied Energy 154:1020–47. doi:10.1016/j.apenergy.2015.04.044.
  • Tanger, P., J. L. Field, C. E. Jahn, M. W. DeFoort, and J. E. Leach. 2013. Biomass for thermochemical conversion: Targets and challenges. Frontiers in Plant Science 4:218. doi:10.3389/fpls.2013.00218.
  • Toklu, E. 2017. Biomass energy potential and utilization in Turkey. Renewable Energy 107:235–44. doi:10.1016/j.renene.2017.02.008.
  • Transparency platform, real-time generation EXIST (EPIAS) , Accessed 20th Dec. 2021 https://seffaflik.epias.com.tr/transparency/uretim/gerceklesen-uretim/gercek-zamanli-uretim.xhtml.
  • Tremel, A., M. Gaderer, and H. Spliethoff. 2013. Small‐scale production of synthetic natural gas by allothermal biomass gasification. International Journal of Energy Research 37 (11):1318–30. doi:10.1002/er.2933.
  • Turkish Statistical Institute, TUIK. https://www.google.com/search?q=https%2F%2F%3Adata.tuik.gov.tr&rlz=1C1GCEB_enIN1054IN1054&oq
  • United Nations. 1998. Kyoto protocol to the united nations framework convention on climate change. Kyoto, JP: United Nations.
  • U.S energy information administration Website: https://www.eia.gov/todayinenergy/detail.php?id=26212
  • Valente, A., D. Iribarren, and J. Dufour. 2019. Life cycle sustainability assessment of hydrogen from biomass gasification: A comparison with conventional hydrogen. International Journal of Hydrogen Energy 44 (38):21193–203. doi:10.1016/j.ijhydene.2019.01.105.
  • Verma, S., L. M. Das, and S. C. Kaushik. 2021. An experimental study on gas-to-liquids and biogas dual fuel operation of a diesel engine. International Journal of Exergy 36 (2–4):330–44. doi:10.1504/IJEX.2021.118724.
  • Zhang, Y., P. Xu, S. Liang, B. Liu, Y. Shuai, and B. Li. 2019. Exergy analysis of hydrogen production from steam gasification of biomass: A review. International Journal of Hydrogen Energy 44 (28):14290–302. doi:10.1016/j.ijhydene.2019.02.064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.