108
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Sustainable biodiesel production via transesterification of vegetable oils and waste frying oil over reusable magnetic Ca2Fe2O5/CaO@MgFe2O4-Fe2O3 catalyst

, , , , , & show all
Pages 8047-8061 | Received 11 Oct 2022, Accepted 09 Feb 2023, Published online: 18 Jun 2023

References

  • Abbaszaadeh, A., B. Ghobadian, M. R. Omidkhah, and G. Najafi. 2012. Current biodiesel production technologies: A comparative review. Energy Conversion and Management 63:138–48. doi:10.1016/j.enconman.2012.02.027.
  • Abdulkareem-Alsultan, G., N. Asikin-Mijan, H. V. Lee, and Y. H. Taufiq-Yap. 2016. A new route for the synthesis of La-Ca oxide supported on nano activated carbon via vacuum impregnation method for one pot esterification-transesterification reaction. Chemical Engineering Journal 304:61–71. doi:10.1016/j.cej.2016.05.116.
  • Ali, M. A., I. A. Al-Hydary, and T. A. Al-Hattab. 2017. Nano-Magnetic Catalyst CaO-Fe3O4 for Biodiesel Production from Date Palm Seed Oil. Bulletin of Chemical Reaction Engineering & Catalysis 12 (3):460. doi:10.9767/bcrec.12.3.923.460-468.
  • Armaroli, N., and V. Balzani. 2007. The future of energy supply: Challenges and opportunities. Angewandte Chemie (International Ed: in English) 46 (1–2):52–66. doi:10.1002/anie.200602373.
  • Arrais Gonçalves, M., E. Karine Lourenço Mares, J. Roberto Zamian, G. Narciso da Rocha Filho, and L. Rafael Vieira da Conceição. 2021. Statistical optimization of biodiesel production from waste cooking oil using magnetic acid heterogeneous catalyst MoO3/SrFe2O4. Fuel 304:121463. doi:10.1016/j.fuel.2021.121463.
  • Banerjee, S., S. Sahani, and Y. Chandra Sharma. 2019. Process dynamic investigations and emission analyses of biodiesel produced using Sr-Ce mixed metal oxide heterogeneous catalyst. Journal of Environmental Management 248:109218. doi:10.1016/j.jenvman.2019.06.119.
  • Banković–Ilić, I. B., M. R. Miladinović, O. S. Stamenković, and V. B. Veljković. 2017. Application of nano CaO–based catalysts in biodiesel synthesis. Renewable and Sustainable Energy Reviews 72:746–60. doi:10.1016/j.rser.2017.01.076.
  • Dhal, J. P., S. K. Sahoo, B. G. Mishra, and G. Hota. 2017. MgFe2O4-Fe2O3 heterostructured nanomaterials: Synthesis and photocatalytic study. Materials Letters 196:95–99. doi:10.1016/j.matlet.2017.02.118.
  • Feyzi, M., and L. Norouzi. 2016. Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production. Renewable Energy 94:579–86. doi:10.1016/j.renene.2016.03.086.
  • Gardy, J., E. Nourafkan, A. Osatiashtiani, A. F. Lee, K. Wilson, A. Hassanpour, and X. Lai. 2019. A core-shell SO4/Mg-Al-Fe3O4 catalyst for biodiesel production. Applied Catalysis B: Environmental 259:118093. doi:10.1016/j.apcatb.2019.118093.
  • Gardy, J., A. Osatiashtiani, O. Céspedes, A. Hassanpour, X. Lai, A. F. Lee, K. Wilson, and M. Rehan. 2018. A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Applied Catalysis B: Environmental 234:268–78. doi:10.1016/j.apcatb.2018.04.046.
  • Hoang, A. T., M. Tabatabaei, M. Aghbashlo, A. P. Carlucci, A. I. Ölçer, A. T. Le, and A. Ghassemi. 2021. Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. Renewable and Sustainable Energy Reviews 135:110204. doi:10.1016/j.rser.2020.110204.
  • Hu, Q., Y. Shen, J. W. Chew, T. Ge, and C.-H. Wang. 2020. Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production. Chemical Engineering Journal 379:122346. doi:10.1016/j.cej.2019.122346.
  • Hu, S., Y. Guan, Y. Wang, and H. Han. 2011. Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Applied Energy 88 (8):2685–90. doi:10.1016/j.apenergy.2011.02.012.
  • Huo, N., Y. Yin, W. Liu, J. Zhang, Y. Ding, Q. Wang, Z. Shi, and S. Yang. 2016. Facile synthesis of MgFe2O4/C composites as anode materials for lithium-ion batteries with excellent cycling and rate performance. New Journal of Chemistry 40 (8):7068–74. doi:10.1039/c6nj00084c.
  • Jeyakumar, N., Z. Huang, D. Balasubramanian, A. T. Le, X. P. Nguyen, P. L. Pandian, and A. T. Hoang. 2022. Experimental evaluation over the effects of natural antioxidants on oxidation stability of binary biodiesel blend. International Journal of Energy Research 46 (14):20437–61. doi:10.1002/er.7956.
  • Jung, J. I., H. Y. Jeong, J. S. Lee, M. G. Kim, and J. Cho. 2014. A bifunctional perovskite catalyst for oxygen reduction and evolution. Angewandte Chemie (International Ed: in English) 53 (18):4582–86. doi:10.1002/anie.201311223.
  • Kesić, Ž., I. Lukić, M. Zdujić, Č. Jovalekić, V. Veljković, and D. Skala. 2016. Assessment of CaTiO3, CaMnO3, CaZrO3 and Ca2Fe2O5 perovskites as heterogeneous base catalysts for biodiesel synthesis. Fuel Processing Technology 143:162–68. doi:10.1016/j.fuproc.2015.11.018.
  • Kesic, Z., I. Lukic, M. Zdujic, L. Mojovic, and D. Skala. 2016. Calcium oxide based catalysts for biodiesel production: A review. Chemical Industry & Chemical Engineering Quarterly 22 (4):391–408. doi:10.2298/ciceq160203010k.
  • Kim, C. H., G. S. Qi, K. Dahlberg, and W. Li. 2010. Strontium-Doped Perovskites Rival Platinum Catalysts for Treating NOx in Simulated Diesel Exhaust. Science 327 (5973):1624–27. doi:10.1126/science.1184087.
  • Kusumo, F., T. M. I. Mahlia, A. H. Shamsuddin, A. R. Ahmad, A. S. Silitonga, S. Dharma, M. Mofijur, F. Ideris, H. C. Ong, R. Sebayang, et al. 2021. Optimisation of biodiesel production from mixed Sterculia foetida and rice bran oil. International Journal of Ambient Energy 43 (1):4380–90. doi:10.1080/01430750.2021.1888802.
  • Lin, T., S. Zhao, S. Niu, Z. Lyu, K. Han, and X. Hu. 2020. Halloysite nanotube functionalized with La-Ca bimetallic oxides as novel transesterification catalyst for biodiesel production with molecular simulation. Energy Conversion and Management 220:113138. doi:10.1016/j.enconman.2020.113138.
  • Liu, C., P. Lv, Z. Yuan, F. Yan, and W. Luo. 2010. The nanometer magnetic solid base catalyst for production of biodiesel. Renewable Energy 35 (7):1531–36. doi:10.1016/j.renene.2009.10.009.
  • Liu, M., Y. Huang, Q. Liu, X. Hu, Q. Liu, H. Chen, Y. Dong, Y. Zhao, and S. Niu. 2019. Ferric oxide as a support of carbide slag for effective transesterification of triglycerides in soybean oil. Energy Conversion and Management 198:111785. doi:10.1016/j.enconman.2019.111785.
  • Liu, X., H. He, Y. Wang, S. Zhu, and X. Piao. 2008. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87 (2):216–21. doi:10.1016/j.fuel.2007.04.013.
  • Liu, Y., P. Zhang, M. Fan, and P. Jiang. 2016. Biodiesel production from soybean oil catalyzed by magnetic nanoparticle MgFe2O4@CaO. Fuel 164:314–21. doi:10.1016/j.fuel.2015.10.008.
  • Marwaha, A., A. Dhir, S. K. Mahla, and S. K. Mohapatra. 2018. An overview of solid base heterogeneous catalysts for biodiesel production. Catalysis Reviews 60 (4):594–628. doi:10.1080/01614940.2018.1494782.
  • Milano, J., H. C. Ong, H. H. Masjuki, A. S. Silitonga, W.-H. Chen, F. Kusumo, S. Dharma, and A. H. Sebayang. 2018. Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology. Energy Conversion and Management 158:400–15. doi:10.1016/j.enconman.2017.12.027.
  • Nabgan, W., B. Nabgan, M. Ikram, A. H. Jadhav, M. W. Ali, A. Ul-Hamid, H. Nam, P. Lakshminarayana, A. Kumar, M. B. Bahari, et al. 2022. Synthesis and catalytic properties of calcium oxide obtained from organic ash over a titanium nanocatalyst for biodiesel production from dairy scum. Chemosphere 290:133296. doi:10.1016/j.chemosphere.2021.133296.
  • Nancy, L., R. J. A. Ross, and F. Seifert. 2002. Compressibility of brownmillerite (Ca2Fe2O5): Effect of vacancies on the elastic properties of perovskites. Physics of the Earth and Planetary Interiors 129 (1–2):145–51. doi:10.1016/S0031-9201(01)00269-2.
  • Phan, T.-L., N. Tran, D. H. Kim, P. T. Tho, B. T. Huy, T. N. Dang, D.-S. Yang, and B. Lee. 2018. Electronic structure and magnetic properties of Al-doped Ca2Fe2O5 brownmillerite compounds. Journal of the American Ceramic Society 101 (5):2181–89. doi:10.1111/jace.15357.
  • Pohl, N. L. B., J. M. Streff, and S. Brokman. 2012. Evaluating Sustainability: Soap versus Biodiesel Production from Plant Oils. Journal of Chemical Education 89 (8):1053–56. doi:10.1021/ed100451d.
  • Rao, A. V. R. K., P. Dudhe, and V. Chelvam. 2021. Role of oxygen defects in basicity of Se doped ZnO nanocatalyst for enhanced triglyceride transesterification in biodiesel production. Catalysis Communications 149:106258. doi:10.1016/j.catcom.2020.106258.
  • Royer, S., and D. Duprez. 2011. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. ChemCatchem 3 (1):24–65. doi:10.1002/cctc.201000378.
  • Sanchez, N., R. Y. Ruiz, B. Cifuentes, and M. Cobo. 2019. Controlling sugarcane press-mud fermentation to increase bioethanol steam reforming for hydrogen production. Waste Manag 98:1–13. doi:10.1016/j.wasman.2019.08.006.
  • Sano, N., K. Yamada, S. Tsunauchi, and H. Tamon. 2017. A novel solid base catalyst for transesterification of triglycerides toward biodiesel production: Carbon nanohorn dispersed with calcium ferrite. Chemical Engineering Journal 307:135–42. doi:10.1016/j.cej.2016.08.010.
  • Shi, M., P. Zhang, M. Fan, P. Jiang, and Y. Dong. 2017. Influence of crystal of Fe2O3 in magnetism and activity of nanoparticle CaO@Fe2O3 for biodiesel production. Fuel 197:343–47. doi:10.1016/j.fuel.2017.02.060.
  • Sun, Z., X. Wu, C. K. Russell, M. D. Dyar, E. C. Sklute, S. Toan, M. Fan, L. Duan, and W. Xiang. 2019. Synergistic enhancement of chemical looping-based CO2 splitting with biomass cascade utilization using cyclic stabilized Ca2Fe2O5 aerogel. Journal of Materials Chemistry A 7 (3):1216–26. doi:10.1039/c8ta10277e.
  • Wang, Q., X. Wenlei, and L. Guo. 2022. Molybdenum and zirconium oxides supported on KIT-6 silica: A recyclable composite catalyst for one–pot biodiesel production from simulated low-quality oils. Renewable Energy 187:907–22. doi:10.1016/j.renene.2022.01.122.
  • Xia, S., Y. Hu, C. Chen, J. Tao, B. Yan, W. Li, G. Zhu, Z. Cheng, and G. Chen. 2022. Electrolytic transesterification of waste cooking oil using magnetic Co/Fe–Ca based catalyst derived from waste shells: A promising approach towards sustainable biodiesel production. Renewable Energy 200:1286–99. doi:10.1016/j.renene.2022.10.071.
  • Xia, S., J. Li, G. Chen, J. Tao, W. Li, and G. Zhu. 2022. Magnetic reusable acid-base bifunctional Co doped Fe2O3–CaO nanocatalysts for biodiesel production from soybean oil and waste frying oil. Renewable Energy 189:421–34. doi:10.1016/j.renene.2022.02.122.
  • Xie, W., Y. Han, and H. Wang. 2018. Magnetic Fe3O4/MCM-41 composite-supported sodium silicate as heterogeneous catalysts for biodiesel production. Renewable Energy 125:675–81. doi:10.1016/j.renene.2018.03.010.
  • Xie, W., and F. Wan. 2018. Basic ionic liquid functionalized magnetically responsive Fe3O4@HKUST-1 composites used for biodiesel production. Fuel 220:248–56. doi:10.1016/j.fuel.2018.02.014.
  • Xie, W., and L. Zhao. 2014. Heterogeneous CaO–MoO3–SBA-15 catalysts for biodiesel production from soybean oil. Energy Conversion and Management 79:34–42. doi:10.1016/j.enconman.2013.11.041.
  • Xue, B.-J., J. Luo, F. Zhang, and Z. Fang. 2014. Biodiesel production from soybean and Jatropha oils by magnetic CaFe2O4–Ca2Fe2O5-based catalyst. Energy 68:584–91. doi:10.1016/j.energy.2014.02.082.
  • Zhou, L., J. Yao, Z. Ren, Z. Yu, and H. Cai. 2020. Development of Magnetic Multi-Shelled Hollow Catalyst for Biodiesel Production. Energies 13 (11):2754. doi:10.3390/en13112754.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.