120
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of photothermal performance of glazed window integrated with airflow channel and phase change material

, ORCID Icon, , , , , ORCID Icon & show all
Pages 8203-8217 | Received 02 Mar 2023, Accepted 12 Jun 2023, Published online: 20 Jun 2023

References

  • Arıcı, M., M. Tükel, Ç. Yıldız, D. Li, and H. Karabay. 2020. Is the thermal transmittance of air-filled inclined multi-glazing windows similar to that of vertical ones? Energy and Buildings 229:229. doi:10.1016/j.enbuild.2020.110515.
  • Ascione, F., N. Bianco, F. de Rossi, T. Iovane, and G. M. Mauro. 2022. Are transparent double-skin facades effective for energy retrofit? Answers for an office building - with and without photovoltaic integration. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (1):257–71. doi:10.1080/15567036.2022.2042430.
  • Design Code for Heating, Ventilation and Air Conditioning of Civil Buildings (GB50736-2012). 2012.
  • Gloriant, F., P. Tittelein, A. Joulin, and S. Lassue. 2015. Modeling a triple-glazed supply-air window. Building and Environment 84:1–9. doi:10.1016/j.buildenv.2014.10.017.
  • Goia, F., L. Bianco, Y. Cascone, M. Perino, and V. Serra. 2014. Experimental analysis of an advanced dynamic glazing prototype integrating PCM and thermotropic layers. Energy Procedia 48:1272–81. doi:10.1016/j.egypro.2014.02.144.
  • Goia, F., M. Perino, and V. Serra. 2014. Experimental analysis of the energy performance of a full-scale PCM glazing prototype. Solar Energy 100:217–33. doi:10.1016/j.solener.2013.12.002.
  • Hu, Y., R. Guo, and P. K. Heiselberg. 2020. Performance and control strategy development of a PCM enhanced ventilated window system by a combined experimental and numerical study. Renewable Energy 155:134–52. doi:10.1016/j.renene.2020.03.137.
  • Hu, Y., P. K. Heiselberg, and R. Guo. 2020. Ventilation cooling/heating performance of a PCM enhanced ventilated window - an experimental study. Energy and Buildings 214:109903. doi:10.1016/j.enbuild.2020.109903.
  • IEA. 2021. Buildings-A source of enormous untapped efficiency potential.
  • Ismail, K. A. R., and J. R. Henríquez. 2006. Simplified model for a ventilated glass window under forced air flow conditions. Applied Thermal Engineering 26 (2–3):295–302. doi:10.1016/j.applthermaleng.2005.04.023.
  • Ismail JRH, K. A. R. Parametric study on composite and PCM glass systems. 2000.
  • Jalil, J. M., and S. M. Salih. 2021. Experimental and numerical investigation of paraffin wax as thermal insulator in a double glazed window. Journal of Energy Storage 35:102173. doi:10.1016/j.est.2020.102173.
  • Ke, W., J. Ji, C. Wang, C. Zhang, H. Xie, Y. Tang, and Y. Lin. 2022. Comparative analysis on the electrical and thermal performance of two CdTe multi-layer ventilated windows with and without a middle PCM layer: A preliminary numerical study. Renewable Energy 189:1306–23. doi:10.1016/j.renene.2022.03.090.
  • Ke, Y., Y. Tan, C. Feng, C. Chen, Q. Lu, Q. Xu, T. Wang, H. Liu, X. Liu, J. Peng, et al. 2022. Tetra-fish-inspired aesthetic thermochromic windows toward energy-saving buildings. Applied Energy 315:315. doi:10.1016/j.apenergy.2022.119053.
  • King, M. F. L., P. N. Rao, A. Sivakumar, V. K. Mamidi, S. Richard, M. Vijayakumar, K. Arunprasath, and P. M. Kumar. 2022. Thermal performance of a double-glazed window integrated with a phase change material (PCM). Materials Today: Proceedings 50:1516–21. doi:10.1016/j.matpr.2021.09.099.
  • Li, D., Y. Ma, S. Zhang, R. Yang, C. Zhang, and C. Liu. 2022. Photothermal and energy performance of an innovative roof based on silica aerogel-PCM glazing systems. Energy Conversion and Management 262:262. doi:10.1016/j.enconman.2022.115567.
  • Li, D., Y. Wu, C. Liu, G. Zhang, and M. Arıcı. 2018. Numerical investigation of thermal and optical performance of window units filled with nanoparticle enhanced PCM. International Journal of Heat and Mass Transfer 125:1321–32. doi:10.1016/j.ijheatmasstransfer.2018.04.152.
  • Li, D., C. Zhang, Q. Li, C. Liu, M. Arıcı, and Y. Wu. 2020. Thermal performance evaluation of glass window combining silica aerogels and phase change materials for cold climate of China. Applied Thermal Engineering 165:165. doi:10.1016/j.applthermaleng.2019.114547.
  • Li, S., K. Zou, G. Sun, and X. Zhang. 2018. Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM. Sustainable Cities and Society 40:266–73. doi:10.1016/j.scs.2018.01.020.
  • Ma, M., M. Xie, and Q. Ai. 2021. Numerical simulation on photo-thermal properties of double glazing unit filled with TiN-Al2O3 binary nanoparticles enhanced phase change material. Sustainable Energy Technologies and Assessments 48:48. doi:10.1016/j.seta.2021.101676.
  • Meng, Y., Y. Tan, X. Li, Y. Cai, J. Peng, and Y. Long. 2022. Building-integrated photovoltaic smart window with energy generation and conservation. Applied Energy 324:324. doi:10.1016/j.apenergy.2022.119676.
  • Preet, S., J. Mathur, and S. Mathur. 2022. Influence of geometric design parameters of double skin façade on its thermal and fluid dynamics behavior: A comprehensive review. Solar Energy 236:249–79. doi:10.1016/j.solener.2022.02.055.
  • Ramana, M. V., & Saboor, S. 2021. A novel glazing system filled with hydrogel granules energy saving diurnal illumination color rendering and co2 emission mitigation prospective. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–16. doi:10.1080/15567036.2021.1994058.
  • Shancheng Wang, T. J., Y. Meng, R. Yang, G. Tan, and Y. Long. 2021. Scalable thermochromic smart windows with passive radiative cooling regulation Science 374:1501–1504.
  • Shen, Y., P. Xue, T. Luo, Y. Zhang, C. Y. Tso, N. Zhang, Y. Y. Sun, J. C. Xie, and J. P. Liu. 2022. Regional applicability of thermochromic windows based on dynamic radiation spectrum. Renewable Energy 196:15–27. doi:10.1016/j.renene.2022.06.135.
  • Skaff, M. C., and L. Gosselin. 2014. Summer performance of ventilated windows with absorbing or smart glazings. Solar Energy 105:2–13. doi:10.1016/j.solener.2013.08.025.
  • Souayfane, F., P. H. Biwole, and F. Fardoun. 2018. Thermal behavior of a translucent superinsulated latent heat energy storage wall in summertime. Applied Energy 217:390–408. doi:10.1016/j.apenergy.2018.02.119.
  • Souayfane, F., P. H. Biwole, F. Fardoun, and P. Achard. 2019. Energy performance and economic analysis of a TIM-PCM wall under different climates. Energy 169:1274–91. doi:10.1016/j.energy.2018.12.116.
  • Tükel, M., K. Mumcuoğlu, M. Arıcı, and H. Karabay. 2019. Analysis of fluid flow and heat transfer characteristics in multiple glazing roofs with a special emphasis on the thermal performance. Applied Thermal Engineering 148:694–703. doi:10.1016/j.applthermaleng.2018.11.089.
  • Wieprzkowicz, A., and D. Heim. 2020. Modelling of thermal processes in a glazing structure with temperature dependent optical properties - an example of PCM-window. Renewable Energy 160:653–62. doi:10.1016/j.renene.2020.06.146.
  • Yong, S., W. Fu-Qiang, X. Xin-Lin, T. He-Ping, and L. Ying-Chun. 2011. Radiative properties of a solar cavity receiver/reactor with quartz window. International Journal of Hydrogen Energy 36 (19):12148–58. doi:10.1016/j.ijhydene.2011.07.013.
  • Zhang, S., W. Hu, D. Li, C. Zhang, M. Arıcı, Ç. Yıldız, X. Zhang, and Y. Ma. 2021. Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows. Energy 222:222. doi:10.1016/j.energy.2021.119916.
  • Zhang, H., J. Liu, F. Shi, T. Li, H. Zhang, D. Yang, Y. Li, Z. Tian, and N. Zhou. 2022. A novel bidirectional fast self-responsive PVA-PNIPAM/LimCsnWO3 composite hydrogel for smart window applications. Chemical Engineering Journal 431:431. doi:10.1016/j.cej.2021.133353.
  • Zhang, S., Y. Ma, D. Li, C. Liu, and R. Yang. 2022. Thermal performance of a reversible multiple-glazing roof filled with two PCM. Renewable Energy 182:1080–93. doi:10.1016/j.renene.2021.11.008.
  • Zhong, K., S. Li, G. Sun, S. Li, and X. Zhang. 2015. Simulation study on dynamic heat transfer performance of PCM-filled glass window with different thermophysical parameters of phase change material. Energy and Buildings 106:87–95. doi:10.1016/j.enbuild.2015.05.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.