148
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Performance investigation on blade arc angle and blade shape factor of a Savonius hydrokinetic turbine using artificial neural network

ORCID Icon, , &
Pages 8104-8124 | Received 27 Jan 2023, Accepted 04 Jun 2023, Published online: 19 Jun 2023

References

  • Abadi, E., A. Mohammad, M. Farzaneh-Gord, M. H. Ahmadi, R. Kumar, and K.-W. Chau. 2020. A numerical and experimental study on the energy efficiency of a regenerative heat and mass exchanger utilizing the counter-flow maisotsenko cycle. Engineering Applications of Computational Fluid Mechanics 14 (1):1–12. doi:10.1080/19942060.2019.1617193.
  • Abdelaziz, K. R., Nawar MA, Ramadan A, Attai YA, Mohamed MH. 2022a. Performance improvement of a savonius turbine by using auxiliary blades. Energy 244:122575. doi:10.1016/j.energy.2021.122575.
  • Abdelaziz, K. R., Nawar MA, Ramadan A, Attai YA, Mohamed MH. 2022b. Performance investigation of a savonius rotor by varying the blade arc angles. Ocean Engineering. 260(July):112054. doi:10.1016/j.oceaneng.2022.112054.
  • Abu-Hamdeh, N. H., and K. H. Almitani. 2017. Construction and numerical analysis of a collapsible vertical axis wind turbine. Energy Conversion and Management 151 (June):400–13. doi:10.1016/j.enconman.2017.09.015.
  • Alit, I. B., I. A. Sri Andyani, and M. Mirmanto. 2018. Effect of overlapping ratio, blade shape factor, and blade arc angle to modified rotor savonius performances. International Journal of Applied Engineering Research 13 (1):411–16.
  • Al-Shammari, S. A., A. Hassan Karamallah, and S. Aljabair. 2020. Blade Shape optimization of savonius wind turbine at low wind energy by artificial neural network. IOP Conference Series: Materials Science & Engineering 881 (1). doi:10.1088/1757-899X/881/1/012154.
  • Bagheri, A., A. Nazari, and J. Sanjayan. 2019. The use of machine learning in boron-based geopolymers: function approximation of compressive strength by ANN and GP. Measurement: Journal of the International Measurement Confederation 141:241–49. doi:10.1016/j.measurement.2019.03.001.
  • Banan, A., A. Nasiri, and A. Taheri-Garavand. 2020. Deep learning-based appearance features extraction for automated carp species identification. Aquacultural Engineering 89 (January):102053. doi:10.1016/j.aquaeng.2020.102053.
  • Bhuyan, S., and A. Biswas. 2014. Investigations on self-starting and performance characteristics of simple H andhybrid H-Savonius vertical axis wind rotors. Energy Conversion and Management 87:859–67. doi:10.1016/j.enconman.2014.07.056.
  • Bianchini, A., Balduzzi F, Bachant P, Ferrara G, Ferrari L. 2017. Effectiveness of two-dimensional CFD simulations for darrieus VAWTs: A combined numerical and experimental assessment. Energy Conversion and Management 136:318–28. doi:10.1016/j.enconman.2017.01.026.
  • Castelli, M. R., and E. Benini. 2011. Effect of blade inclination angle on a darrieus wind turbine. Journal of Turbomachinery 134 (3):1–10. doi:10.1115/1.4003212.
  • Chan, C. M., H. L. Bai, and D. Q. He. 2018. Blade shape optimization of the savonius wind turbine using a genetic algorithm. Applied Energy 213 (August 2017):148–57. doi:10.1016/j.apenergy.2018.01.029.
  • Chen, Y., and Y. Lian. 2015. Numerical investigation of vortex dynamics in an H-Rotor vertical axis wind turbine. Engineering Applications of Computational Fluid Mechanics 9 (1):21–32. doi:10.1080/19942060.2015.1004790.
  • De Marco, A., D. P. Coiro, D. Cucco, and F. Nicolosi. 2014. A numerical study on a vertical-axis wind turbine with inclined arms. International Journal of Aerospace Engineering 2014. doi:10.1155/2014/180498.
  • Duffie, J. A., and W. A. Beckman. 2013. Solar Engineering of Thermal Processes Fourth ed. 10.1002/9781118671603
  • Fan, Y., Xu K, Wu H, Zheng Y, Tao B. 2020. Spatiotemporal modeling for nonlinear distributed thermal processes based on KL decomposition, MLP and LSTM network. IEEE Access 8:25111–21. doi:10.1109/ACCESS.2020.2970836.
  • Ghalandari, M., Ziamolki A, Mosavi A, Shamshirband S, Chau KW, Bornassi S. 2019. Aeromechanical optimization of first row compressor test stand blades using a hybrid machine learning model of genetic algorithm, artificial neural networks and design of experiments. Engineering Applications of Computational Fluid Mechanics. 13(1):892–904. doi:10.1080/19942060.2019.1649196.
  • Ghasemian, M., Z. N. Ashrafi, and A. Sedaghat. 2017. A review on computational fluid dynamic simulation techniques for darrieus vertical axis wind turbines. Energy Conversion & Management 149:87–100. doi:10.1016/j.enconman.2017.07.016.
  • Golecha, K., T. I. Eldho, and S. V. Prabhu. 2012. Study on the Interaction between two hydrokinetic savonius turbines. International Journal of Rotating Machinery 2012. doi:10.1155/2012/581658.
  • Gupta, R., A. Biswas, and K. K. Sharma. 2008. Comparative study of a three-bucket savonius rotor with a combined three-bucket savonius-three-bladed darrieus rotor. Renewable Energy 33 (9):1974–81. doi:10.1016/j.renene.2007.12.008.
  • Gupta, M. K., and P. M. V. Subbarao. 2020. Development of a semi-analytical model to select a suitable airfoil section for blades of horizontal axis hydrokinetic turbine. Energy Reports 6 (February):32–37. doi:10.1016/j.egyr.2019.08.014.
  • Hayashi, T., L. Yan, and Y. Hara. 2005. Wind tunnel tests on a different phase three-stage. JSME International Journal, Series B 48 (1):9–16. doi:10.1299/jsmeb.48.9.
  • Ibrahim, K., V. Suphandani Djanali, and N. Ikhwan. 2020. Numerical study of bach-bladed savonius wind turbine with varying blade shape factor. The International Journal of Mechanical Engineering and Sciences 4 (2):12. doi:10.12962/j25807471.v4i2.7839.
  • Kamoji, M. A., S. B. Kedare, and S. V. Prabhu. 2008. Experimental investigations on single stage, two stage and three stage conventional savonius rotor. International Journal of Energy Research 32 (2008):877–95. doi:10.1002/er.1399.
  • Kamoji, M. A., S. B. Kedare, and S. V. Prabhu. 2009. Experimental investigations on single stage modified savonius rotor. Applied Energy 86 (7–8):1064–73. doi:10.1016/j.apenergy.2008.09.019.
  • Kara, F., K. Aslantaş, and A. Çiçek. 2016. Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Applied Soft Computing Journal 38:64–74. doi:10.1016/j.asoc.2015.09.034.
  • Khan, M. J., G. Bhuyan, M. T. Iqbal, and J. E. Quaicoe. 2009. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review. Applied Energy 86 (10):1823–35. doi:10.1016/j.apenergy.2009.02.017.
  • Kumar, A., and R. P. Saini. 2017a. Performance analysis of a savonius hydrokinetic turbine having twisted blades. Renewable Energy 108:502–22. doi:10.1016/j.renene.2017.03.006.
  • Kumar, A., and R. P. Saini. 2017b. Performance analysis of a single stage modified savonius hydrokinetic turbine having twisted blades. Renewable Energy 113:461–78. doi:10.1016/j.renene.2017.06.020.
  • Malinov, S., W. Sha, and J. J. McKeown. 2001. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Computational Materials Science 21 (3):375–94. doi:10.1016/S0927-0256(01)00160-4.
  • Mao, Z., and W. Tian. 2015. Effect of the blade arc angle on the performance of a savonius wind turbine. Advances in Mechanical Engineering 7 (5):1–10. doi:10.1177/1687814015584247.
  • Marugán, A. P., F. Pedro García Márquez, J. María Pinar Perez, and D. Ruiz-Hernández. 2018. A survey of artificial neural network in wind energy systems. Applied Energy 228 (June):1822–36. doi:10.1016/j.apenergy.2018.07.084.
  • Modi, V. J., M. S. U. K. Fernando, and N. J. Roth. 2006. Aerodynamics of the savonius rotor experiments ans analysis. Proceedings of the 25th Intersociety Energy Conversion Engineering Conference 1999 (December):1–6.
  • Mohamed, M. H., G. Janiga, E. Pap, and D. Thévenin. 2011. Optimal blade shape of a modified savonius turbine using an obstacle shielding the returning blade. Energy Conversion and Management 52 (1):236–42. doi:10.1016/j.enconman.2010.06.070.
  • Mohammadhassani, M., Nezamabadi-Pour H, Jumaat MZ, Jameel M, Arumugam AM. 2013. Application of Artificial Neural Networks (ANNs) and Linear Regressions (LR) to predict the deflection of concrete deep beams. Computers and Concrete. 11(3):237–52. doi:10.12989/cac.2013.11.3.237.
  • Paish, O. 2002. Small hydro power: Technology and current status. Renewable and Sustainable Energy Reviews 6 (6):537–56. doi:10.1016/S1364-0321(02)00006-0.
  • Patel, R., and V. Patel. 2022. Performance analysis of savonius hydrokinetic turbine using ‘C’ shaped deflector. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (3):6618–31. doi:10.1080/15567036.2022.2101718.
  • Ramadan, A., K. Yousef, M. Said, and M. H. Mohamed. 2018. Shape optimization and experimental validation of a drag vertical axis wind turbine. Energy 151:839–53. doi:10.1016/j.energy.2018.03.117.
  • Rathod, U. H., V. Kulkarni, and U. K. Saha. 2022. On the application of machine learning in savonius wind turbine technology: an estimation of turbine performance using artificial neural network and genetic expression programming. Journal of Energy Resources Technology, Transactions of the ASME 144 (6):1–16. doi:10.1115/1.4051736.
  • Rengma, T. S., Sengupta AR, Basumatary M, Biswas A, Bhanja D. 2021. Performance analysis of a two bladed savonius water turbine cluster for perennial river-stream application at low water speeds. Journal of the Brazilian Society of Mechanical Sciences and Engineering 43 (5). doi: 10.1007/s40430-021-02982-x.
  • Rengma, T. S., and P. M. V. Subbarao. 2022a. Comparative analysis of savonius type ultra-micro hydrokinetic turbine of experimental and computational investigation. 380. doi:10.1007/978-981-16-3497-0_19.
  • Rengma, T. S., and P. M. V. Subbarao. 2022b. Optimization of semicircular blade profile of savonius hydrokinetic turbine using artificial neural network. Renewable Energy 200:658–73. doi:https://doi.org/10.1016/j.renene.2022.10.021.
  • Salleh, M. B., N. M. Kamaruddin, and Z. Mohamed-Kassim. 2019. Savonius hydrokinetic turbines for a sustainable river-based energy extraction: a review of the technology and potential applications in Malaysia. Sustainable Energy Technologies and Assessments 36 (July):100554. doi:10.1016/j.seta.2019.100554.
  • Sarma, N. K., A. Biswas, and R. D. Misra. 2014. Experimental and computational evaluation of savonius hydrokinetic turbine for low velocity condition with comparison to savonius wind turbine at the same input power. Energy Conversion and Management 83:88–98. doi:10.1016/j.enconman.2014.03.070.
  • Savonius, S. J. 1931. The S-Rotor and Its Applications. Mechanical Engineering 53 (5):333–38.
  • Sood, M., and S. Kumar Singal. 2021. A numerical analysis to determine wake recovery distance for the longitudinal arrangement of hydrokinetic turbine in the channel system. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 8:1–22. doi:10.1080/15567036.2021.1979695.
  • Talukdar, P. K., A. Sardar, V. Kulkarni, and U. K. Saha. 2018. Parametric analysis of model savonius hydrokinetic turbines through experimental and computational investigations. Energy Conversion and Management 158 (January):36–49. doi:10.1016/j.enconman.2017.12.011.
  • Taormina, R., and K. Wing Chau. 2015. ANN-Based Interval forecasting of streamflow discharges using the LUBE method and MOFIPS. Engineering Applications of Artificial Intelligence 45:429–40. doi:10.1016/j.engappai.2015.07.019.
  • Tian, W., Z. Mao, B. Zhang, and L. Yanjun. 2018. Shape optimization of a savonius wind rotor with different convex and concave sides. Renewable Energy 117:287–99. doi:10.1016/j.renene.2017.10.067.
  • Vimal, P., T. I. E. Ganapathi Bhat, and S. V. Prabhu. 2017. Influence of overlap ratio and aspect ratio on the performance of savonius hydrokinetic turbine. International Journal of Energy Research 41 (6):829–44. doi:10.1002/er.3670.
  • Wu, C. L., and K. W. Chau. 2013. Prediction of rainfall time series using modular soft computingmethods. Engineering Applications of Artificial Intelligence 26 (3):997–1007. doi:10.1016/j.engappai.2012.05.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.