202
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Jet impingement technique for heat transfer enhancement: Discovering future research trends

ORCID Icon, & ORCID Icon
Pages 8183-8202 | Received 09 Feb 2023, Accepted 10 Jun 2023, Published online: 19 Jun 2023

References

  • Afroz, F., and M. A. Sharif. 2018. Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface. Applied Thermal Engineering 138:154–72. doi:10.1016/j.applthermaleng.2018.04.007.
  • Afroz, F., and M. A. Sharif. 2020. Numerical investigation of heat transfer from a plane surface due to turbulent annular swirling jet impingement. International Journal of Thermal Sciences 151:106–257. doi:10.1016/j.ijthermalsci.2019.106257.
  • Agrawal, C., 2013. Rewetting of a hot horizontal surface through mist jet impingement cooling. International Journal of Heat & Mass Transfer. 58(1–2):188–96. doi:10.1016/j.ijheatmasstransfer.2012.10.079.
  • Ahmed, Z. U., Y. M. Al-Abdeli, and F. G. Guzzomi. 2017. Flow field and thermal behaviour in swirling and non-swirling turbulent impinging jets. International Journal of Thermal Sciences 114:241–56. doi:10.1016/j.ijthermalsci.2016.12.013.
  • Ahmed, A., Wright, E., Abdel-Aziz, F. and Yan, Y. 2021. Numerical investigation of heat transfer and flow characteristics of a double-wall cooling structure: Reverse circular jet impingement. Applied Thermal Engineering 189:116–720. doi:10.1016/j.applthermaleng.2021.116720.
  • Alam, T., and M.-H. Kim. 2017. Heat transfer enhancement in solar air heater duct with conical protrusion roughness ribs. Applied Thermal Engineering 126:458–69. doi:10.1016/j.applthermaleng.2017.07.181.
  • Alekseenko, S., 2021. Investigation of transfer processes in swirling flows in application to vortex furnaces for coal fuel. International Journal of Thermal Sciences 161:106715. doi:10.1016/j.ijthermalsci.2020.106715.
  • Balla, H. H., A. L. Hashem, Z. S. Kareem, and A. F. Abdulwahid. 2021. Heat transfer potentials of ZnO/water nanofluid in free impingement jet. case studies in Thermal Engineering, 2021. Case Studies in Thermal Engineering 27:101143. doi:10.1016/j.csite.2021.101143.
  • Barewar, S. D., M. Joshi, P. O. Sharma, P. S. Kalos, B. Bakthavatchalam, S. S. Chougule, K. Habib, and S. K. Saha. 2023. Optimization of jet impingement heat transfer: A review on advanced techniques and parameters. Thermal Science and Engineering Progress 39:101–697. doi:10.1016/j.tsep.2023.101697.
  • Bharadwaj, G., 2017. Heat transfer augmentation and flow characteristics in ribbed triangular duct solar air heater: An experimental analysis. International Journal of Green Energy. 14(7):587–98. doi:10.1080/15435075.2017.1307751.
  • Bowler, D. E., L. M. Buyung-Ali, T. M. Knight, and A. S. Pullin. 2010. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC public health. BMC Public Health 10 (1):1–10. doi:10.1186/1471-2458-10-456.
  • Courtis, M., 2023. Coupled aerothermal-mechanical analysis in single crystal double wall transpiration cooled gas turbine blades with a large film hole density. Applied Thermal Engineering 219:119–329. doi:10.1016/j.applthermaleng.2022.119329.
  • Das, S., A. Biswas, and B. Das. 2023. Parametric investigation on the thermo-hydraulic performance of a novel solar air heater design with conical protruded nozzle jet impingement. Applied Thermal Engineering 219:119–583. doi:10.1016/j.applthermaleng.2022.119583.
  • Debnath, S., M. H. U. Khan, and Z. U. Ahmed. 2020. Turbulent swirling impinging jet arrays: A numerical study on fluid flow and heat transfer. Thermal Science and Engineering Progress 19:100–580. doi:10.1016/j.tsep.2020.100580.
  • Deo, N. S., S. Chander, and J. Saini. 2016. Performance analysis of solar air heater duct roughened with multigap V-down ribs combined with staggered ribs. Renewable Energy 91:484–500. doi:10.1016/j.renene.2016.01.067.
  • Diop, S. N., 2022. A study on heat transfer characteristics by impinging jet within a few amounts of mist. International Journal of Thermofluids 13:100–30. doi:10.1016/j.ijft.2021.100130.
  • Farzad, M., 2022. Enhancement of heat transfer and product quality using jet reattachment nozzles in drying of food products. Drying Technology. 40(2):352–70. doi:10.1080/07373937.2020.1804927.
  • Gabhane, M. G., and A. B. Kanase-Patil. 2017. Experimental analysis of double flow solar air heater with multiple C shape roughness. Solar Energy 155:1411–16. doi:10.1016/j.solener.2017.07.038.
  • Guan, T., 2017. Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle–part 1: Experimental analysis. International Journal of Heat & Mass Transfer 106:329–38. doi:10.1016/j.ijheatmasstransfer.2016.06.101.
  • Guan, T., J.-Z. Zhang, and Y. Shan. 2018. Effect of offset-jets arrangement on leading edge hot-air heating effectiveness of engine inlet guide strut. Applied Thermal Engineering 128:357–72. doi:10.1016/j.applthermaleng.2017.09.040.
  • Guo, Q., Z. Wen, and R. Dou. 2017. Experimental and numerical study on the transient heat-transfer characteristics of circular air-jet impingement on a flat plate. International Journal of Heat & Mass Transfer 104:1177–88. doi:10.1016/j.ijheatmasstransfer.2016.09.048.
  • Hossain, M. A., 2018. Experimental and numerical investigation of sweeping jet film cooling. Journal of Turbomachinery 140 (3). doi: 10.1115/1.4038690.
  • Hsu, C., W. Jhan, and Y. Chang. 2020. Flow and heat transfer characteristics of a pulsed jet impinging on a flat plate. Heat and Mass Transfer 56 (1):143–60. doi:10.1007/s00231-019-02696-w.
  • Huang, Y., 2023. Experimental investigation on heat transfer and pressure drop characteristics of confined jet impingement boiling on hybrid-structured surface. Applied Thermal Engineering 218:119–320. doi:10.1016/j.applthermaleng.2022.119320.
  • Hussain, L., 2021. Heat transfer augmentation through different jet Impingement techniques: A State-of-the-Art Review. Energies. 14(20):6458. doi:10.3390/en14206458.
  • Irshad, K., 2022. Thermal performance investigation of therminol55/MWCNT+ CuO nanofluid flow in a heat exchanger from an exergy and entropy approach. Case Studies in Thermal Engineering 34:102010. doi:10.1016/j.csite.2022.102010.
  • Jaberi, B., 2013. Experimental investigation on heat transfer enhancement due to Al2O3–water nanofluid using impingement of round jet on circular disk. International Journal of Thermal Sciences 74:199–207. doi:10.1016/j.ijthermalsci.2013.06.013.
  • Jambunathan, K., 1992. A review of heat transfer data for single circular jet impingement. International Journal of Heat and Fluid Flow. 13(2):106–15. doi:10.1016/0142-727X(92)90017-4.
  • Joulaei, A., M. Nili-Ahmadabadi, and M. Y. Ha. 2023. Numerical study of the effect of geometric scaling of a fluidic oscillator on the heat transfer and frequency of impinging sweeping jet. Applied Thermal Engineering 221:119–848. doi:10.1016/j.applthermaleng.2022.119848.
  • Khangembam, C., and D. Singh. 2019. Experimental investigation of air–water mist jet impingement cooling over a heated cylinder. Journal of Heat Transfer 141 (8). doi:10.1115/1.4043771.
  • Kim, S. H., 2023. Uniform impingement heat transfer distribution in corrugated channel with an anti-crossflow-wing. International Journal of Heat & Mass Transfer 201:123–576. doi:10.1016/j.ijheatmasstransfer.2022.123576.
  • Kim, S. H., H. D. Kim, and K. C. Kim. 2019. Measurement of two-dimensional heat transfer and flow characteristics of an impinging sweeping jet. International Journal of Heat & Mass Transfer 136:415–26. doi:10.1016/j.ijheatmasstransfer.2019.03.021.
  • Kumar, R., 2018. Numerical investigation of heat transfer and friction factor in ribbed triangular duct solar air heater using computational fluid dynamics (CFD). Journal of Mechanical Science and Technology. 32(1):399–404. doi:10.1007/s12206-017-1240-8.
  • Kumar, R., A. Kumar, and V. Goel. 2017. A parametric analysis of rectangular rib roughened triangular duct solar air heater using computational fluid dynamics. Solar Energy 157:1095–107. doi:10.1016/j.solener.2017.08.071.
  • Kumar, A., and A. Layek. 2019. Energetic and exergetic performance evaluation of solar air heater with twisted rib roughness on absorber plate. Journal of Cleaner Production 232:617–28. doi:10.1016/j.jclepro.2019.05.363.
  • Kumar, R., R. Nadda, A. Rana, R. Chauhan, and S. S. Chandel. 2020. Performance investigation of a solar thermal collector provided with air jets impingement on multi V-shaped protrusion ribs absorber plate. Heat and Mass Transfer 56 (3):913–30. doi:10.1007/s00231-019-02755-2.
  • Kumar, K., D. Prajapati, and S. Samir. 2017. Heat transfer and friction factor correlations development for solar air heater duct artificially roughened with ‘S’shape ribs. Experimental Thermal & Fluid Science 82:249–61. doi:10.1016/j.expthermflusci.2016.11.012.
  • Li, X., 2023. Acoustic resonance mechanism for axisymmetric screech modes of underexpanded jets impinging on an inclined plate. Journal of Fluid Mechanics 956:A2. doi:10.1017/jfm.2022.996.
  • Liu, Z.-H., and Y.-H. Qiu. 2007. Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface. Heat and Mass Transfer 43:699–706. doi:10.1007/s00231-006-0159-x.
  • Lv, J., 2017. Experimental investigation of free single jet impingement using SiO2-water nanofluid. Experimental Thermal & Fluid Science 84:39–46. doi:10.1016/j.expthermflusci.2017.01.010.
  • Maghrabie, H. M. 2021. Heat transfer intensification of jet impingement using exciting jets-A comprehensive review. Renewable and Sustainable Energy Reviews 139:110684. doi:10.1016/j.rser.2020.110684.
  • Markal, B., M. Avci, and O. Aydin. 2020. Conical coaxial impinging air jets: Angle effect on the heat transfer performance. Heat and Mass Transfer 56:3135–46. doi:10.1007/s00231-020-02925-7.
  • Markal, B., and O. Aydin. 2018. Experimental investigation of coaxial impinging air jets. Applied Thermal Engineering 141:1120–30. doi:10.1016/j.applthermaleng.2018.06.066.
  • Modak, M., S. S. Chougule, and S. K. Sahu. 2017. An experimental investigation on heat transfer characteristics of hot surface by using CuO–Water Nanofluids in circular jet impingement cooling. Journal of Heat Transfer 140 (1). doi:10.1115/1.4037396.
  • Modak, M., S. Srinivasan, K. Garg, S. S. Chougule, M. K. Agarwal, and S. K. Sahu. 2015. Experimental investigation of heat transfer characteristics of the hot surface using Al2O3–water nanofluids. Chemical engineering and processing: Process intensification. Chemical Engineering and Processing: Process Intensification 91:104–13. doi:10.1016/j.cep.2015.03.006.
  • Nidhul, K., 2020. Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis. Energy 200:117–448. doi:10.1016/j.energy.2020.117448.
  • Patel, S. S., and A. Lanjewar. 2019. Experimental and numerical investigation of solar air heater with novel V-rib geometry. Journal of Energy Storage 21:750–64. doi:10.1016/j.est.2019.01.016.
  • Rakhsha, S., M. Rajabi Zargarabadi, and S. Saedodin. 2021. Experimental and numerical study of flow and heat transfer from a pulsed jet impinging on a pinned surface. Experimental Heat Transfer 34 (4):376–91. doi:10.1080/08916152.2020.1755388.
  • Ravi, R. K., and R. Saini. 2018. Nusselt number and friction factor correlations for forced convective type counter flow solar air heater having discrete multi V shaped and staggered rib roughness on both sides of the absorber plate. Applied Thermal Engineering 129:735–46. doi:10.1016/j.applthermaleng.2017.10.080.
  • Selimefendigil, F., and H. F. Öztop. 2022. Combined effects of double porous layers and nanofluids on the performance of confined single and multi-jet impingement heat transfer. Chemical Engineering Communications 209 (7):925–37. doi:10.1080/00986445.2021.1928650.
  • Seo, H., 2023. Experimental and numerical investigation of the effects of the jet diameter and arrangement of effusion holes on the concave surface of an impingement/effusion cooling system. Journal of Visualization. 26(1):61–81. doi:10.1007/s12650-022-00869-0.
  • Singh, P., and S. Chander. 2018. Heat transfer and fluid flow characteristics of a pair of interacting dual swirling flame jets impinging on a flat surface. International Journal of Heat & Mass Transfer 124:90–108. doi:10.1016/j.ijheatmasstransfer.2018.03.034.
  • Singh, P., and S. Chander. 2020. Effect of interactions on flow field and heat transfer characteristics for three corotating dual swirling flames impinging on a flat surface. Combustion Science and Technology 192 (4):701–27. doi:10.1080/00102202.2019.1593155.
  • Singh, D., B. Premachandran, and S. Kohli. 2017. Double circular air jet impingement cooling of a heated circular cylinder. International Journal of Heat & Mass Transfer 109:619–46. doi:10.1016/j.ijheatmasstransfer.2017.02.035.
  • Skullong, S., 2017. Heat transfer augmentation in a solar air heater channel with combined winglets and wavy grooves on absorber plate. Applied Thermal Engineering 122:268–84. doi:10.1016/j.applthermaleng.2017.04.158.
  • Sun, B., Y. Qu, and D. Yang. 2016. Heat transfer of single impinging jet with Cu nanofluids. Applied Thermal Engineering 102:701–07. doi:10.1016/j.applthermaleng.2016.03.166.
  • Tepe, A. Ü., 2020. Jet impingement cooling on a rib-roughened surface using extended jet holes. Applied Thermal Engineering 178:115–601. doi:10.1016/j.applthermaleng.2020.115601.
  • Terekhov, V. I., S. V. Kalinina, and K. A. Sharov. 2018. Convective heat transfer at an annular jet impingement on a flat blockage. High Temperature 56:217–22. doi:10.1134/S0018151X18010194.
  • Uddin, N., B. Weigand, and B. A. Younis. 2019. Comparative study on heat transfer enhancement by turbulent impinging jet under conditions of swirl, active excitations and passive excitations. International Communications in Heat and Mass Transfer 100:35–41. doi:10.1016/j.icheatmasstransfer.2018.12.002.
  • Vickers, N. J. 2017. Animal communication: When i’m calling you, will you answer too? Current Biology 27 (14):R713–R15. doi:10.1016/j.cub.2017.05.064.
  • Viskanta, R. 1993. Heat transfer to impinging isothermal gas and flame jets. Experimental Thermal & Fluid Science 6 (2):111–34. doi:10.1016/0894-1777(93)90022-B.
  • Weigand, B., and S. Spring. 2009. Multiple jet impingement− a review. In TURBINE-09. Proceedings of international symposium on heat transfer in gas turbine systems, Begel House Inc.
  • Wongcharee, K., et al. 2020. Heat transfer rate of swirling impinging jets issuing from a twisted tetra-lobed nozzle. Case Studies in Thermal Engineering 22:100–780. doi:10.1016/j.csite.2020.100780.
  • Wright, D., 2023. Computational investigation of single and multi-jet array impingement boiling. Applied Thermal Engineering 218:119–342. doi:10.1016/j.applthermaleng.2022.119342.
  • Wu, F., 2019. Numerical investigations on flow and heat transfer of swirl and impingement composite cooling structures of turbine blade leading edge. International Journal of Heat & Mass Transfer 144:118–625. doi:10.1016/j.ijheatmasstransfer.2019.118625.
  • Wu, M., 2020. Mixing characteristics of a film-exciting flapping jet. International Journal of Heat and Fluid Flow 82:108–532. doi:10.1016/j.ijheatfluidflow.2019.108532.
  • Wu, Y., S. Yu, and L. Zuo. 2019. Large eddy simulation analysis of the heat transfer enhancement using self-oscillating fluidic oscillators. International Journal of Heat & Mass Transfer 131:463–71. doi:10.1016/j.ijheatmasstransfer.2018.11.070.
  • Xu, L., 2021. Flow and heat transfer characteristics of a swirling impinging jet issuing from a threaded nozzle. Case Studies in Thermal Engineering 25:100–970. doi:10.1016/j.csite.2021.100970.
  • Xu, M., M. Wu, and J. Mi. 2019. A new type of self-excited flapping jets due to a flexible film at the nozzle exit. Experimental Thermal & Fluid Science 106:226–33. doi:10.1016/j.expthermflusci.2019.04.031.
  • Yadav, S., and R. Saini. 2020. Numerical investigation on the performance of a solar air heater using jet impingement with absorber plate. Solar Energy 208:236–48. doi:10.1016/j.solener.2020.07.088.
  • Youn, J.-S., W.-W. Choi, and S.-M. Kim. 2021. Numerical investigation of jet array impingement cooling with effusion holes. Applied Thermal Engineering 197:117–347. doi:10.1016/j.applthermaleng.2021.117347.
  • Zargar, O. A., R. F. Huang, and C. M. Hsu. 2019. Effect of acoustic excitation on flames of swirling dual-disk double-concentric jets. Experimental Thermal & Fluid Science 100:337–48. doi:10.1016/j.expthermflusci.2018.09.018.
  • Zeitoun, O., and M. Ali. 2012. Nanofluid impingement jet heat transfer. Nanoscale research letters. 7 (1):1–13. doi:10.1186/1556-276X-7-139.
  • Zhang, R., et al. 2023. Influence of jet angle on heat transfer during cooling of hot rolled seamless steel tubes. International Journal of Thermal Sciences 189:108–259. doi:10.1016/j.ijthermalsci.2023.108259.
  • Zhang, Y., and M. Vanierschot. 2021. Proper orthogonal decomposition analysis of coherent motions in a turbulent annular jet. Applied Mathematics and Mechanics 42 (9):1297–310. doi:10.1007/s10483-021-2764-8.
  • Zhu, K., 2018. Transient heat transfer characteristics of array-jet impingement on high-temperature flat plate at low jet-to-plate distances. International Journal of Heat & Mass Transfer 127:413–25. doi:10.1016/j.ijheatmasstransfer.2018.07.099.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.