178
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mercury removal performance and mechanism of biochar co-modified with HNO3 and NH4Br under oxy-combustion atmosphere

, ORCID Icon, , &
Pages 8167-8182 | Received 08 Feb 2023, Accepted 10 Jun 2023, Published online: 20 Jun 2023

References

  • Chen, B. C., C. Y. Tsai, S. Y. Pan, Y. T. Chen, and H. C. Hsi. 2020. Sustainable recovery of gaseous mercury by adsorption and electrothermal desorption using activated carbon fiber cloth. Environmental Science and Technology 54 (3):1857–66. doi:10.1021/acs.est.9b05114.
  • Cui, W., Y. Xu, G. Q. Luo, Q. Z. Zhang, Z. H. Li, and S. B. Zhang. 2021. Enhanced mercury removal performance of Cu-Fe binary oxide sorbents modified by non-thermal plasma. Chemical Engineering Journal 425:131851. doi:10.1016/j.cej.2021.131851.
  • Demiral, İ., C. Samdan, and H. Demiral. 2021. Enrichment of the surface functional groups of activated carbon by modification method. Surfaces and Interfaces 22:100873. doi:10.1016/j.surfin.2020.100873.
  • Du, J. J., L. Gao, Y. Yang, S. H. Guo, M. Omran, J. Chen, and G. Chen. 2021. Dielectric characterisation and reduction properties of the blending mixtures of low-grade pyrolusite and waste corn stalks in the microwave field. Fuel 305:121546. doi:10.1016/j.fuel.2021.121546.
  • Emets, V. V., and B. B. Damaskin. 2013. Estimation of the specific adsorption of I-, Br-, and Cl- ions in systems (Tl-Ga)/N-methylformamide + 0.1m M KA + 0.1(1-m) M KClO4 (KA is KCl, KBr, and KI) based on the analysis of two-dimensional pressure curves obtained by integration of differential capacitance. Russian Journal of Electrochemistry 49 (11):1013–19.
  • Fritz, A. G., C. Able, M. S. Mauter, and E. Grol. 2023. Aqueous bromide discharges from u.s. coal-fired power plants: Points of origin, concentration ranges, and effluent treatment costs. Energy & Fuels 37 (5):3854–64. doi:10.1021/acs.energyfuels.2c03364.
  • Geng, X. Z., Y. F. Duan, S. L. Zhao, J. W. Hu, and W. M. Zhao. 2021. Mechanism study of mechanochemical bromination on fly ash mercury removal adsorbent. Chemosphere 274:129637. doi:10.1016/j.chemosphere.2021.129637.
  • Geng, X. Z., J. W. Hu, Y. F. Duan, H. J. Tang, T. F. Huang, Y. F. Xu, S. J. Ren, and M. Liu. 2020. The effect of mechanical-chemical-brominated modification on physicochemical properties and mercury removal performance of coal-fired by-product. Fuel 266:117041. doi:10.1016/j.fuel.2020.117041.
  • Gupta, M., N. Savla, C. Pandit, S. Pandit, P. K. Gupta, M. Pant, S. Khilari, Y. Kumar, D. Agarwal, R. R. Nair, et al. 2022. Use of biomass-derived biochar in wastewater treatment and power production: A promising solution for a sustainable environment. Science of the Total Environment 825:153892. doi:10.1016/j.scitotenv.2022.153892.
  • He, W., J. Ran, J. Niu, G. Yang, Z. Ou, and Z. He. 2020. Insight into the effect of facet-dependent surface and oxygen vacancies of CeO2 for Hg removal: From theoretical and experimental studies. Journal of Hazardous Materials 397:122646. doi:10.1016/j.jhazmat.2020.122646.
  • He, P., X. B. Zhang, X. L. Peng, X. M. Jiang, J. Wu, and N. C. Chen. 2015. Interaction of elemental mercury with defective carbonaceous cluster. Journal of Hazardous Materials 300:289–97. doi:10.1016/j.jhazmat.2015.07.017.
  • Jin, C., J. Sun, Y. Chen, Y. Guo, D. Han, R. Wang, and C. Zhao. 2021. Sawdust wastes-derived porous carbons for CO2 adsorption. Part 1. Optimization preparation via orthogonal experiment. Separation and Purification Technology 276:119270. doi:10.1016/j.seppur.2021.119270.
  • Liu, Z. Y., Y. G. Adewuyi, S. Shi, H. Chen, Y. Li, D. J. Liu, and Y. X. Liu. 2019. Removal of gaseous Hg-0 using novel seaweed biomass-based activated carbon. Chemical Engineering Journal 366:41–49. doi:10.1016/j.cej.2019.02.025.
  • Liu, S., L. Chen, X. Mu, M. Xu, J. Yu, G. Yang, X. Luo, H. Zhao, and T. Wu. 2019. Development of Pd-n/g-C3N4 adsorbent for Hg0 removal - DFT study of influences of the support and Pd cluster size. Fuel 254:115537. doi:10.1016/j.fuel.2019.05.120.
  • Liu, J., W. Q. Qu, and C. G. Zheng. 2013. Theoretical studies of mercury-bromine species adsorption mechanism on carbonaceous surface. Proceedings of the Combustion Institute 34:2811–19.
  • Liu, D. J., W. Xu, and Y. X. Liu. 2020. Seaweed bio-chars modified with metal chloride for elemental mercury capture from simulated flue gas. Atmospheric Pollution Research 11 (6):122–30. doi:10.1016/j.apr.2020.03.006.
  • Liu, D. J., L. T. Yang, B. Li, and J. Wu. 2020. Gaseous mercury removal by graphene-like carbon nitride impregnated with ammonium bromide. Fuel 280:118635. doi:10.1016/j.fuel.2020.118635.
  • Liu, S. H., N. Q. Yan, Z. R. Liu, Z. Qu, P. Wang, S. G. Chang, and C. Miller. 2007. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants. Environmental Science and Technology 41 (4):1405–12. doi:10.1021/es061705p.
  • Li, G. L., S. X. Wang, Q. G. Wu, F. Y. Wang, D. Ding, and B. Shen. 2017. Mechanism identification of temperature influence on mercury adsorption capacity of different halides modified bio-chars. Chemical Engineering Journal 315:251–61. doi:10.1016/j.cej.2017.01.030.
  • Li, G. L., S. X. Wang, Q. R. Wu, F. Y. Wang, and B. X. Shen. 2016. Mercury sorption study of halides modified bio-chars derived from cotton straw. Chemical Engineering Journal 302:305–13. doi:10.1016/j.cej.2016.05.045.
  • Ma, R., S. Fakudze, Q. N. Shang, Y. Y. Wei, J. Q. Chen, C. G. Liu, J. A. Han, and Q. L. Chu. 2021. Catalytic hydrothermal carbonization of pomelo peel for enhanced combustibility of coal/hydrochar blends and reduced CO2 emission. Fuel 304:121422. doi:10.1016/j.fuel.2021.121422.
  • Presto, A. A., and E. J. Granite. 2006. Survey of catalysts for oxidation of mercury in flue gas. Environmental Science and Technology 40 (18):5601–09. doi:10.1021/es060504i.
  • Qin, H., P. He, J. Wu, and N. C. Chen. 2020. Theoretical study of hydrocarbon functional groups on elemental mercury adsorption on carbonaceous surface. Chemical Engineering Journal 380:122505. doi:10.1016/j.cej.2019.122505.
  • Ran, H., H. Wang, J. Wu, Y. Zhu, J. Wu, and H. Shen. 2021. Interference effect of H2O on Hg0 removal by a mercury sorbent in an oxyfuel-combustion atmosphere. Industrial & Engineering Chemistry Research 60 (48):17450–57. doi:10.1021/acs.iecr.1c03120.
  • Shen, B. X., Z. Liu, H. Xu, and F. M. Wang. 2019. Enhancing the absorption of elemental mercury using hydrogen peroxide modified bamboo carbons. Fuel 235:878–85. doi:10.1016/j.fuel.2018.08.082.
  • Shen, F. H., J. Liu, Z. Zhang, Y. C. Dong, and C. K. Gu. 2018. Density functional study of hydrogen sulfide adsorption mechanism on activated carbon. Fuel Processing Technology 171:258–64. doi:10.1016/j.fuproc.2017.11.026.
  • Shen, B. X., L. H. Tian, F. K. Li, X. Zhang, H. Xu, and S. Singh. 2017. Elemental mercury removal by the modified bio-char from waste tea. Fuel 187:189–96. doi:10.1016/j.fuel.2016.09.059.
  • Shen, H., H. Wang, C. Shen, J. Wu, Y. Zhu, W. Shi, X. Zhang, and Z. Ying. Effect of atmosphere of SO2 coexisted with oxidizing gas on mercury removal under oxy-fuel condition. Chemosphere 259:259, 127525. doi:10.1016/j.chemosphere.2020.127525.
  • Sun, L. S., T. Chen, C. L. Ba, T. R. Reina, and J. Yu. 2021. Preparation of sorbents derived from bamboo and bromine flame retardant for elemental mercury removal. Journal of Hazardous Materials 410:124583. doi:10.1016/j.jhazmat.2020.124583.
  • Sun, Z., Y. Liao, S. Zhao, X. Zhang, Q. Liu, and X. Shi. 2022. Research progress in metal–organic frameworks (MOFs) in CO2 capture from post-combustion coal-fired flue gas: Characteristics, preparation, modification and applications. Journal of Materials Chemistry A 10 (10):5174–211. doi:10.1039/D1TA07856A.
  • Sun, Z., A. Ma, S. Zhao, H. Luo, X. Xie, Y. Liao, and X. Liang. 2022. Research progress on petroleum coke for mercury removal from coal-fired flue gas. Fuel 309:122084. doi:10.1016/j.fuel.2021.122084.
  • Sun, Z. Q., X. Shu, X. Y. Ma, and Z. Y. Shen. 2020. Research on technical route of denitrification ultra-low emission transformation in small thermal power plant. Electric Power Technology and Environmental Protection 36 (6):23–26.
  • Tao, J., X. B. Gu, Z. L. He, and S. L. Zhao. 2019. Trace elements emission characteristics of a 0.3MWth coal fired circulating fluidized bed boiler. Electric Power Technology and Environmental Protection 35 (2):38–41.
  • Vieira, R. S., M. L. M. Oliveira, E. Guibal, E. Rodriguez-Castellon, and M. M. Beppu. 2011. Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: An XPS investigation of mechanism. Colloids and Surfaces A, Physicochemical and Engineering Aspects 374 (1–3):108–14. doi:10.1016/j.colsurfa.2010.11.022.
  • Wang, H., Y. Duan, Z. Ying, and Y. Xue. 2018. Effects of SO2 on Hg adsorption by activated carbon in O2/CO2 conditions. Part 1: Experimental and kinetic study. Energy & Fuels 32 (10):10773–78. doi:10.1021/acs.energyfuels.8b02295.
  • Wang, F. M., G. L. Li, B. X. Shen, Y. Y. Wang, and C. He. 2015. Mercury removal over the vanadia-titania catalyst in CO2-enriched conditions. Chemical Engineering Journal 263:356–63. doi:10.1016/j.cej.2014.10.091.
  • Wang, H., C. Shen, Y. Duan, Z. Ying, and Y.-N. Li. 2019. Synergistic effect between H2O and SO2 on mercury removal by activated carbon in O2/CO2 conditions. Journal of Chemical Technology & Biotechnology 94 (4):1195–201. doi:10.1002/jctb.5866.
  • Wu, D. W., J. Liu, Y. J. Yang, Y. C. Zhao, and Y. Zheng. 2021. The role of SO2 in arsenic removal by carbon-based sorbents: A DFT study. Chemical Engineering Journal 410:128439. doi:10.1016/j.cej.2021.128439.
  • Wu, J., H. Wang, H. Shen, C. Shen, Y. Zhu, J. Wu, and H. Ran. 2021. Experimental and kinetic analysis of H2O on Hg0 removal by sorbent traps in oxy-combustion atmosphere. Industrial & Engineering Chemistry Research 60 (33):12200–09. doi:10.1021/acs.iecr.1c01636.
  • Xu, Y., F. F. Deng, Q. C. Pang, S. W. He, Y. Q. Xu, G. Q. Luo, and H. Yao. 2018. Development of waste-derived sorbents from biomass and brominated flame retarded plastic for elemental mercury removal from coal-fired flue gas. Chemical Engineering Journal 350:911–19. doi:10.1016/j.cej.2018.06.055.
  • Xu, W., J. F. Pan, B. W. Fan, and Y. X. Liu. 2019. Removal of gaseous elemental mercury using seaweed chars impregnated by NH4Cl and NH4Br. Journal of Cleaner Production 216:277–87. doi:10.1016/j.jclepro.2019.01.195.
  • Yan, G., Z. Gao, M. Zhao, W. Yang, and X. Ding. 2020. A comprehensive exploration of mercury adsorption sites on the carbonaceous surface: A DFT study. Fuel 282:118781. doi:10.1016/j.fuel.2020.118781.
  • Yang, W., H. Chen, X. Han, S. Ding, Y. Shan, and Y. X. Liu. 2020. Preparation of magnetic Co-Fe modified porous carbon from agricultural wastes by microwave and steam activation for mercury removal. Journal of Hazardous Materials 381:120981. doi:10.1016/j.jhazmat.2019.120981.
  • Yang, Y. J., J. Liu, F. Liu, Z. Wang, and J. Y. Ding. 2018. Comprehensive Hg/Br reaction chemistry over Fe2O3 surface during coal combustion. Combustion and Flame 196:210–22. doi:10.1016/j.combustflame.2018.06.018.
  • Yang, W., Y. X. Liu, Q. Wang, and J. F. Pan. 2017. Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation. Chemical Engineering Journal 326:169–81. doi:10.1016/j.cej.2017.05.106.
  • Yang, W., Z. Y. Liu, W. Xu, and Y. X. Liu. 2018. Removal of elemental mercury from flue gas using sargassum chars modified by NH4Br reagent. Fuel 214:196–206. doi:10.1016/j.fuel.2017.11.004.
  • Yang, J., H. Xu, Y. Zhao, H. Li, and J. Zhang. 2021. Mercury removal from flue gas by noncarbon sorbents. Energy & Fuels 35 (5):3581–610. doi:10.1021/acs.energyfuels.0c04207.
  • Yu, Q., X. Yang, Y. Dong, Z. Qian, B. Yuan, and D. Fu. 2023. Microwave-boosted elemental mercury removal using natural low-grade pyrolusite. Chemical Engineering Journal 455:140700. doi:10.1016/j.cej.2022.140700.
  • Zhang, B., P. Xu, Y. Qiu, Q. Yu, J. J. Ma, H. Wu, G. Q. Luo, M. H. Xu, and H. Yao. 2015. Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. Chemical Engineering Journal 263:1–8. doi:10.1016/j.cej.2014.10.090.
  • Zhao, S., D. Pudasainee, Y. Duan, R. Gupta, M. Liu, and J. Lu. 2019. A review on mercury in coal combustion process: Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies. Progress in Energy and Combustion Science 73:26–64. doi:10.1016/j.pecs.2019.02.001.
  • Zhou, Q., G. Di, T. Song, P. Lu, and G. Xu. 2022. Template synthesis of sulfur-doped mesoporous carbon for efficiently removing gas-phase elemental mercury from flue gas. Fuel 321:124112. doi:10.1016/j.fuel.2022.124112.
  • Zhou, Q., Y. F. Duan, M. M. Chen, M. Liu, and P. Lu. 2017. Studies on mercury adsorption species and equilibrium on activated carbon surface. Energy & Fuels 31 (12):14211–18. doi:10.1021/acs.energyfuels.7b02699.
  • Zhu, C., Y. F. Duan, C. Y. Wu, Q. Zhou, M. She, T. Yao, and J. Zhang. 2016. Mercury removal and synergistic capture of SO2/NO by ammonium halides modified rice husk char. Fuel 172:160–69. doi:10.1016/j.fuel.2015.12.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.