104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simulation study of De-NOx and ammonia slip with two-stage selective catalytic reduction for diesel engine

, ORCID Icon, , , , & show all
Pages 8140-8152 | Received 28 Nov 2022, Accepted 13 Jun 2023, Published online: 19 Jun 2023

References

  • Abdelhameed, E., and H. Tashima. 2023. EGR and emulsified fuel combination effects on the combustion, performance, and NOx emissions in marine diesel engines. Energies 16 (1):336. doi:10.3390/en16010336.
  • Bendrich, M., B. Opitz, A. Scheuer, R. E. Hayes, and M. Votsmeier. 2022. Selective catalytic reduction: Adding an ammonia slip catalyst mitigates dosing errors. The Canadian Journal of Chemical Engineering 100 (6):1439–47. doi:10.1002/cjce.24293.
  • Boningari, T., and P. G. Smirniotis. 2016. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Current Opinion in Chemical Engineering 13:133–41. doi:10.1016/j.coche.2016.09.004.
  • Busca, G., L. Lietti, G. Ramis, and F. Berti. 1998. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Applied Catalysis B, Environmental 18 (1):1–36. doi:10.1016/S0926-3373(98)00040-X.
  • Chai, M., D. R. Bonthapalle, L. Sobrayen, S. K. Panda, D. Wu, and X. Q. Chen. 2018. Alternating current and direct current-based electrical systems for marine vessels with electric propulsion drives. Applied Energy 231:747–56. doi:10.1016/j.apenergy.2018.09.064.
  • Chun-Fang, Z., P. Yong-Sheng, L. Chang-Yu, W. Chun-Ling, and J. Xiao-Jun. 2023. The development of non-road diesel mobile machinery emission standards in China. Internal Combustion Engine & Parts 1:3. doi:10.19475/j.cnki.issn1674-957x.2023.01.033.
  • Colombo, M., I. Nova, E. Tronconi, V. Schmeisser, B. Bandl-Konrad, and L. R. Zimmermann. 2013. Experimental and modeling study of a dual-layer (SCR + PGM) NH3 slip monolith catalyst (ASC) for automotive SCR after treatment systems. Part 2. Validation of PGM Kinetics and Modeling of the Dual-Layer ASC Monolith. Applied Catalysis B-Environmental 142:337–43. doi:10.1016/j.apcatb.2013.05.032.
  • Cong, Y., H. Gan, H. Wang, G. Hu, and Y. Liu. 2021. Multiobjective optimization of the performance and emissions of a large low-speed dual-fuel marine engine based on MNLR-MOPSO. Journal of Marine Science and Engineering 9 (11):1170. doi:10.3390/jmse9111170.
  • Deng, J. J., X. C. Wang, Z. L. Wei, L. Wang, C. Y. Wang, and Z. B. Chen. 2021. A review of NOx and SOx emission reduction technologies for marine diesel engines and the potential evaluation of liquefied natural gas fuelled vessels. Science of the Total Environment 766:19. doi:10.1016/j.scitotenv.2020.144319.
  • Ding, L., J. Shen, Z. Wang, and H. Jing. 2022. Design and test of SCR system for marine diesel engine. Diesel Engine 44 (1):41–46.
  • Dolatabadi, A., and B. Mohammadi-Ivatloo. 2018. Stochastic risk-constrained optimal sizing for hybrid power system of merchant marine vessels. IEEE Transactions on Industrial Informatics 14 (12):5509–17. doi:10.1109/tii.2018.2824811.
  • Dong, D. L., C. P. Zhao, X. Z. Li, Y. Y. Zhu, and J. Zhang 2012, May 25-27. Simulation Study of the impact of two-stage turbocharged system on diesel engine. Paper presented at the 2nd International Conference on Civil Engineering, Architecture and Building Materials (CEABM 2012), Yantai, PEOPLES R CHINA.
  • Fan, Y., W. Ling, B. Huang, L. Dong, C. Yu, and H. Xi. 2017. The synergistic effects of cerium presence in the framework and the surface resistance to SO2 and H2O in NH3-SCR. Journal of Industrial & Engineering Chemistry 56:108–19. doi:10.1016/j.jiec.2017.07.003.
  • Gao, Y., W. Chen, J. Li, H. Q. Liu, and Z. Huo 2013, Nov 12-13. Study on Identification method of chemical reaction kinetic parameters in heavy duty diesel’s SCR catalytic converter. Paper presented at the 3rd International Conference on Energy, Environment and Sustainable Development (EESD 2013), Shanghai, PEOPLES R CHINA.
  • Gao, Z. P., G. T. Wu, and C. Li. 2016. Ammonia storage characteristics simulation of SCR catalyst for marine diesel engine based on AVL BOOST. Dalian Haishi Daxue Xuebao/Journal of Dalian Maritime University 42 (2):68–74.
  • Gunter, T., J. Pesek, K. Schafer, A. B. Abai, M. Casapu, O. Deutschmann, and J. D. Grunwaldt. 2016. Cu-SSZ-13 as pre-turbine NOx-removal-catalyst: Impact of pressure and catalyst poisons. Applied Catalysis B-Environmental 198:548–57. doi:10.1016/j.apcatb.2016.06.005.
  • He, C., L. Yang, B. F. Cai, Q. Y. Ruan, S. Hong, and Z. Wang. 2021. Impacts of the COVID-19 event on the NOx emissions of key polluting enterprises in China. Applied Energy 281:281. doi:10.1016/j.apenergy.2020.116042.
  • Hoang, A. T., T. T. Huynh, X. P. Nguyen, T. K. T. Nguyen, and T. H. Le. 2021. An analysis and review on the global NO2 emission during lockdowns in COVID-19 period. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–21. doi:10.1080/15567036.2021.1902431.
  • Hossain, A. K., P. Refahtalab, A. Omran, D. I. Smith, and P. A. Davies. 2020. An experimental study on performance and emission characteristics of an IDI diesel engine operating with neat oil-diesel blend emulsion. Renewable Energy 146:1041–50. doi:10.1016/j.renene.2019.06.162.
  • Hsieh, M.-F., and J. Wang. 2011. Development and experimental studies of a control-oriented SCR model for a two-catalyst urea-SCR system. Control Engineering Practice 19 (4):409–22. doi:10.1016/j.conengprac.2011.01.004.
  • Huang, Q., L. Song, R. Wu, and H. He 2016. Establishment and validation of the model for SCR DeNOx catalytic reaction.
  • Jin, W., H. Gan, Y. Cong, and G. Li. 2022. Performance optimization and knock investigation of marine two-stroke pre-mixed dual-fuel engine based on RSM and MOPSO. Journal of Marine Science and Engineering 10 (10):1409. doi:10.3390/jmse10101409.
  • Kang, T. H., H. S. Kim, H. Lee, and D. H. Kim. 2023. Synergistic effect of V2O5-WO3/TiO2 and H-ZSM-5 catalysts prepared by physical mixing on the selective catalytic reduction of NOx with NH3. Applied Surface Science 614:614. doi:10.1016/j.apsusc.2022.156159.
  • Kowalski, J., and W. Tarelko. 2009a. Nox emission from a two-stroke ship engine. Part 1: Modeling aspect. Applied Thermal Engineering 29 (11):2153–59. doi:10.1016/j.applthermaleng.2008.06.032.
  • Kowalski, J., and W. Tarelko. 2009b. Nox emission from a two-stroke ship engine: Part 2 – Laboratory test. Applied Thermal Engineering 29 (11):2160–65. doi:10.1016/j.applthermaleng.2008.06.031.
  • Kurzydym, D., Z. Żmudka, D. Perrone, and A. Klimanek. 2022. Experimental and numerical investigation of nitrogen oxides reduction in diesel engine selective catalytic reduction system. Fuel 313:122971. doi:10.1016/j.fuel.2021.122971.
  • Latha, H. S., K. V. Prakash, M. Veerangouda, D. Maski, and K. T. Ramappa. 2019. A review on SCR system for NOx reduction in diesel engine. International Journal of Current Microbiology & Applied Sciences 8 (4):1553–59. doi:10.20546/ijcmas.2019.804.180.
  • Lehtoranta, K., H. Vesala, P. Koponen, and S. Korhonen. 2015. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions. Environmental Science & Technology 49 (7):4735–41. doi:10.1021/es506185x.
  • Liang, Q., J. Li, H. He, T. Yue, and L. Tong. 2020. Effects of SO2 and H2O on low-temperature NO conversion over F-V2O5-WO3/TiO2 catalysts. Journal of Environmental Sciences 90:253–61. doi:10.1016/j.jes.2019.12.002.
  • Li, W., X. S. Du, Z. Li, Y. Q. Tao, J. Y. Xue, Y. R. Chen, and V. Rakic, J. Ran, V. Rac, V. Rakić. 2022. Electrothermal alloy embedded V2O5-WO3/TiO2 catalyst for NH3-SCR with promising wide operating temperature window. Process Safety and Environmental Protection 159:213–20. doi:10.1016/j.psep.2022.01.001.
  • Liqin, X., L. Lin, and Z. Neng. 2019. Research and application on the structural design of SCR catalyst in marine diesel engine. Internal Combustion Engines 4. doi:10.3969/j.issn.1000-6494.2019.04.001.
  • Liu, W. J., Y. F. Long, S. N. Liu, Y. Y. Zhou, X. Tong, Y. J. Yin, and J. J. Hu, K. Hu, J. Hu. 2022. Commercial SCR catalyst modified with different noble metals (Ag, Pt, Pd) to efficiently remove slip ammonia and NOx in the flue gas. Journal of the Taiwan Institute of Chemical Engineers 138:104472. doi:10.1016/j.jtice.2022.104472.
  • Lu, X., P. Geng, and Y. Chen. 2020. Nox emission reduction technology for marine engine based on tier-III: A review. Journal of Thermal Science 29 (5):1242–68. doi:10.1007/s11630-020-1342-y.
  • Lu, D., G. Theotokatos, J. Zhang, Y. Tang, H. Gan, Q. Liu, and T. Ren. 2021. Numerical investigation of the high pressure selective catalytic reduction system impact on marine two-stroke diesel engines. International Journal of Naval Architecture and Ocean Engineering 13:659–73. doi:10.1016/j.ijnaoe.2021.09.003.
  • Metkar, P. S., M. P. Harold, and V. Balakotaiah. 2013. Experimental and kinetic modeling study of NH3-SCR of NOx on Fe-ZSM-5, Cu-chabazite and combined Fe- and Cu-zeolite monolithic catalysts. Chemical Engineering Science 87:51–66. doi:10.1016/j.ces.2012.09.008.
  • Ming Wei, S., H. Da Ke, X. Yang, Z. Lie Qi, and Y. Zi Bin. 2015. Simulation and Optimization of Structural Parameters of a Marine Diesel Engine SCR Catalyst Carrier. SHIP ENGINEERING 37. 10.13788/j.cnki.cbgc.2015.04.017.
  • Ni, P. Y., X. L. Wang, and H. Li. 2020. A review on regulations, current status, effects and reduction strategies of emissions for marine diesel engines. Fuel 279:279. doi:10.1016/j.fuel.2020.118477.
  • Nova, I., C. Ciardelli, E. Tronconi, D. Chatterjee, and B. Bandl-Konrad. 2006. NH3–NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the Fast SCR reaction. Catalysis Today 114 (1):3–12. doi:10.1016/j.cattod.2006.02.012.
  • Ramis, G., G. Busca, V. Lorenzelli, and P. Forzatti. 1990. Fourier transform infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on TiO2 anatase. Applied Catalysis 64:243–57. doi:10.1016/S0166-9834(00)81564-X.
  • Scheuer, A., W. Hauptmann, A. Drochner, J. Gieshoff, H. Vogel, and M. Votsmeier. 2012. Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation. Applied Catalysis B, Environmental 111-112:445–55. doi:10.1016/j.apcatb.2011.10.032.
  • Tae-Hun, K., Y. Seunghee, and K. Do-Heui. 2021. Improved catalytic performance and resistance to SO2 over V2O5-WO3/TiO2 catalyst physically mixed with Fe2O3 for low-temperature NH3-SCR. Catalysis Today 376:95–103. doi:10.1016/j.cattod.2020.07.042.
  • Talebizadeh, P., M. Babaie, R. Brown, H. Rahimzadeh, Z. Ristovski, and M. Arai. 2014. The role of non-thermal plasma technique in NOx treatment: A review. Renewable and Sustainable Energy Reviews 40:886–901. doi:10.1016/j.rser.2014.07.194.
  • Tan, D., Z. Chen, J. Li, J. Luo, D. Yang, S. Cui, and Z. Zhang. 2021. Effects of swirl and boiling heat transfer on the performance enhancement and emission reduction for a medium diesel engine fueled with biodiesel. Processes 9 (3):568. doi:10.3390/pr9030568.
  • Tan, P. Q., Y. F. Yin, Z. Y. Hu, D. M. Lou, Y. Liu, X. Zhang, and C. J. Huang, K. Liu, Z.-H. Rao, C.-J. Huang. 2021. Effects of catalyst physicochemical properties on the catalytic activity of Cu zeolite selective catalytic reduction at different inlet gas conditions. Energy & Fuels 35 (22):18653–63. doi:10.1021/acs.energyfuels.1c02558.
  • Tong De-Hui, L. G.-X., T. Jian-Zhong, and S. Shao-Jun. 2008. Numerical simulation and analysis of ammonia-based selective catalytic reduction. Transactions of Csice Chinese 26 (4):355–340(in. doi:10.16236/j.cnki.nrjxb.2008.04.010.
  • Topsøe, N.-Y. 1994. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science 265 (5176):1217–19. doi:10.1126/science.265.5176.1217.
  • Van, T. C., J. Ramirez, T. Rainey, Z. Ristovski, and R. J. Brown. 2019. Global impacts of recent IMO regulations on marine fuel oil refining processes and ship emissions. Transportation Research Part D-Transport and Environment 70:123–34. doi:10.1016/j.trd.2019.04.001.
  • Viana, M., P. Hammingh, A. Colette, X. Querol, B. Degraeuwe, I. D. Vlieger, and J. van Aardenne. 2014. Impact of maritime transport emissions on coastal air quality in Europe. Atmospheric Environment 90:96–105. doi:10.1016/j.atmosenv.2014.03.046.
  • Wang, J., Y. P. Hu, Y. X. Cai, C. Zhao, L. Zhu, C. Zhao, and H. Fu. 2021. Influence of Urea-SCR system parameters on NOx conversion rate and liquid film. Energy Sources Part A-Recovery Utilization and Environmental Effects 43 (16):2027–40. doi:10.1080/15567036.2019.1666185.
  • Wang, A., Y. Wang, E. D. Walter, N. M. Washton, Y. Guo, G. Lu, and F. Gao. 2019. NH3-SCR on Cu, Fe and Cu+Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects. Catalysis Today 320:91–99. doi:10.1016/j.cattod.2017.09.061.
  • Winkler, C., P. Flörchinger, M. D. Patil, J. Gieshoff, P. Spurk, and M. Pfeifer. 2003. Modeling of SCR DeNOx catalyst - looking at the impact of substrate attributes. doi:10.4271/2003-01-0845.
  • Wu, X., H. Meng, Y. L. Du, J. N. Liu, B. H. Hou, and X. M. Xie. 2020. Insight into Cu2O/CuO collaboration in the selective catalytic reduction of NO with NH3: Enhanced activity and synergistic mechanism. Journal of Catalysis 384:72–87. doi:10.1016/j.jcat.2020.01.025.
  • Xue, Y., Z. Yin, G. Yang, and Q. LI 2015. Performance analysis of SCR catalytic converter of diesel engine. Ship Science and Technology. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2015&filename=JCKX201502020&uniplatform=NZKPT&v=d8gbSJOzLUUVCezCDA_A6TYvkKtlhSIJUuY2U7iLd8r6_7pUvY8N1KpWwhuWLsiP.
  • Xu, Z., J. Liu, and J. Fu. 2018. Experimental investigation on the urea injection and mixing module for improving the performance of urea-SCR in diesel engines. The Canadian Journal of Chemical Engineering 96 (6):1417–29. doi:10.1002/cjce.23082.
  • Yue, G., X. Liu, and T. Qiu. 2017. Research on ammonia slip and control of diesel engine SCR system. Acta Armamentarii 38 (4):634–42. doi:10.3969/j.issn.1000-1093.2017.04.002.
  • Yu, W., Z. Zhang, and B. Liu. 2020. Effect analysis on the performance enhancement and emission reduction of diesel engine fueled with biodiesel fuel based on an improved model. International Journal of Aerospace Engineering 2020:1–14. doi:10.1155/2020/8831376.
  • Zhang, T., J. Liu, D. Wang, Z. Zhao, Y. Wei, K. Cheng, and A. Duan. 2014. Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe–Cu nanocomposite catalysts: The Fe–Cu bimetallic effect. Applied Catalysis B, Environmental 148-149:520–31. doi:10.1016/j.apcatb.2013.11.006.
  • Zhang, Y., D. Lou, P. Tan, Z. Hu, and L. Fang. 2022. Effect of SCR downsizing and ammonia slip catalyst coating on the emissions from a heavy-duty diesel engine. Energy Reports 8:749–57. doi:10.1016/j.egyr.2021.12.009.
  • Zhang, Y., C. Xia, D. Liu, Y. Zhu, and Y. Feng. 2023. Experimental investigation of the high-pressure SCR reactor impact on a marine two-stroke diesel engine. Fuel 335:127064. doi:10.1016/j.fuel.2022.127064.
  • Zhao, Y., J. Hu, L. Hua, S. Shuai, and J. Wang. 2011. Ammonia storage and slip in a urea selective catalytic reduction catalyst under steady and transient conditions. Industrial & Engineering Chemistry Research 50 (21):11863–71. doi:10.1021/ie201045w.
  • Zheng, G., T. Gardner, A. Kotrba, M. Golin, and P. Majewski. 2011. Development of urea SCR systems for large diesel engines. SAE 2014 Commercial Vehicle Engineering Congress. SAE Technical Paper. ISSN: 0148–7191. doi:10.4271/2014-01-2352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.