133
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A novel method for hybridization of super lift luo converter and boost converter for electric vehicle charging applications

ORCID Icon, ORCID Icon & ORCID Icon
Pages 8419-8437 | Received 13 Mar 2023, Accepted 13 Jun 2023, Published online: 27 Jun 2023

References

  • Ado, M., M. S. BinArif, A. Jusoh, A. U. Mutawakkil, and I. M. Danmallam. 2020. Buck-boost converter with simple gate control for renewable energy applications. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–13. doi:10.1080/15567036.2020.1819475.
  • Ahrabi, R. R., H. Ardi, M. Elmi, and A. Ajami. 2016. A novel step-up multi-input dc–dc converter for hybrid electric vehicles application. IEEE Transactions on Power Electronics 32 (5):3549–61. doi:10.1109/TPEL.2016.2585044.
  • Anbarasan, P., M. Venmathi, M. Vijayaragavan, and V. Krishnakumar. 2022. Performance enhancement of grid integrated photovoltaic system using luo converter. IEEE Canadian Journal of Electrical & Computer Engineering 45 (3):293–302. doi:10.1109/ICJECE.2022.3178696.
  • Arumugam, S., and P. Logamani. 2019. Modeling and adaptive control of modified LUO converter. Microprocessors and Microsystems 71:102889. doi:10.1016/j.micpro.2019.102889.
  • Athikkal, S., B. Chokkalingam, S. I. Ganesan, B. Lehman, and T. B. Lazzarin. 2022. Performance evaluation of a dual-input hybrid step-up dc–dc converter. IEEE Transactions on Industry Applications 58 (3):3769–82. doi:10.1109/TIA.2022.3152973.
  • Babaei, E., M. S. Zarbil, and E. S. Asl. 2019. A developed structure for DC–DC quasi-Z-source converter with high voltage gain and high reliability. Journal of Circuits, Systems & Computers 28 (1):1950012. doi:10.1142/s0218126619500129.
  • Chen, M., and E. K.-W. Cheng. 2018. Derivation, analysis and development of coupled-inductor-based non-isolated DC converters with ultra-high voltage-conversion ratio. IET Power Electronics 11 (12):1964–73. doi:10.1049/iet-pel.2017.0805.
  • Chen, G., Y. Deng, J. Dong, Y. Hu, L. Jiang, and X. He. 2016. Integrated multiple-output synchronous buck converter for electric vehicle power supply. IEEE Transactions on Vehicular Technology 66 (7):5752–61. doi:10.1109/TVT.2016.2633068.
  • Chen, G., Y. Liu, X. Qing, M. Ma, and Z. Lin. 2020. Principle and topology derivation of single-inductor multi-input multi-output DC–DC converters. IEEE Transactions on Industrial Electronics 68 (1):25–36. doi:10.1109/TIE.2020.2965490.
  • Elango, K., A. Maheswari, K. Saravanan, S. Muthusamy, P. Santhiya, H. Panchal, M. Kannan, and S. Chandrasekar. 2023. A novel single phase grid connected solar photovoltaic system for state of charge estimation using recurrent neural networks. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 45 (1):841–59. doi:10.1080/15567036.2023.2172097.
  • Faridpak, B., A. Alahyari, M. Farrokhifar, and H. Momeni. 2020. Toward small scale renewable energy hub-based hybrid fuel stations: Appraising structure and scheduling. IEEE Transactions on Transportation Electrification 6 (1):267–77. doi:10.1109/TTE.2020.2972382.
  • Faridpak, B., M. Farrokhifar, M. Nasiri, A. Alahyari, and N. Sadoogi. July 2021. Developing a super-lift luo-converter with integration of buck converters for electric vehicle applications. CSEE Journal of Power & Energy Systems 7(4):811–20.
  • Glady, J. B. P., and K. Manjunath. 2017. Analysis-Intelligent design and simulation of improved state–space modelling for control of Luo converter. Computers & Electrical Engineering. doi:10.1016/j.compeleceng.2017.11.
  • Gupta, J., and B. Singh. Jan.-Feb 2022. Bridgeless isolated positive output luo converter based high power factor single stage charging solution for light electric vehicles. IEEE Transactions on Industry Applications 58(1):732–41. doi: 10.1109/TIA.2021.3131647.
  • Habib, S., M. M. Z Khan, F. Abbas, A. Ali, M. T. Faiz, F. Ehsan, and H. Tang. 2020. Contemporary trends in power electronics converters for charging solutions of electric vehicles. CSEE Journal of Power & Energy Systems 6 (4):911–29.
  • Haga, H., and F. Kurokawa. 2016. Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicles. IEEE Transactions on Power Electronics 32 (4):2498–507. doi:10.1109/TPEL.2016.2570800.
  • Hasanpour, S., Y. P. Siwakoti, and F. Blaabjerg. 2023. A new high efficiency high step-up DC/DC converter for renewable energy applications. IEEE Transactions on Industrial Electronics 70 (2):1489–500. doi:10.1109/TIE.2022.3161798.
  • Kanase-Patil, A. B., A. P. Kaldate, S. D. Lokhande, H. Panchal, M. Suresh, and V. Priya. 2020. A review of artificial intelligence-based optimization techniques for the sizing of integrated renewable energy systems in smart cities. Environmental Technology Reviews 9 (1):111–36. doi:10.1080/21622515.2020.1836035.
  • KhademiAstaneh, P., J. Javidan, K. Valipour, and A. Akbarimajd. 2019. A bidirectional high step-up multi-input DC-DC converter with soft switching. International Transactions on Electrical Energy Systems 29 (1):e2699. doi:10.1002/etep.2699.
  • Kumar, M. A. B., and V. Krishnasamy. 2023. A single-switch continuous input current buck–boost converter with noninverted output voltage. IEEE Transactions on Power Electronics 38 (2):2181–90. doi:10.1109/TPEL.2022.3215179.
  • Kumar, K., R. Tiwari, N. R. Babu, and K. R. Prabhu. 2018. Analysis of MISO super lift negative output luo converter with MPPT for DC grid connected hybrid PV/wind system. Energy Procedia 145:345–50. doi:10.1016/j.egypro.2018.04.062.
  • Kushwaha, R., and B. Singh. 2019. A modified luo converter-based electric vehicle battery charger with power quality improvement. IEEE Transactions on Transportation Electrification 5 (4):1087–96. Dec. doi:10.1109/TTE.2019.2952089.
  • Lai, C.-M., Y.-H. Cheng, M.-H. Hsieh, and Y.-C. Lin. 2017. Development of a bidirectional dc/dc converter with dual-battery energy storage for hybrid electric vehicle system. IEEE Transactions on Vehicular Technology 67 (2):1036–52. doi:10.1109/TVT.2017.2763157.
  • Lee, W.-S., J. H. Kim, J.-Y. Lee, and I.-O. Lee. 2019. Design of an isolated DC/DC topology with high efficiency of over 97% for EV fast chargers. IEEE Transactions on Vehicular Technology 68 (12):11725–37. doi:10.1109/tvt.2019.2949080.
  • Lin, B.-R. 2020. DC–DC converter implementation with wide output voltage operation. Journal of Power Electronics 20 (2):376–87. doi:10.1007/s43236-020-00037-3.
  • Mohammadzadeh Shahir, F., E. Babaei, and M. Farsadi. 2018. Analysis and design of voltage-lift technique-based non-isolated boost dc–dc converter. IET Power Electronics 11 (6):1083–91. doi:10.1049/iet-pel.2017.0259.
  • Muhammad Ado, M. S. B., A. Jusoh, and A. Usman Mutawakkil& Ibrahim Mohammed Danmallam. 2020. Buck-boost converter with simple gate control for renewable energy applications. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects. doi:10.1080/15567036.2020.1819475.
  • Muhilan, P., K. B. Dibyaraj, I. Anand, S. Senthilkumar, and R. Namani. 2022. A dynamic power control scheme for a standalone solar photovoltaic system using multiport DC–DC converter. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44:4, 9843–9860. doi:10.1080/15567036.2022.2143944.
  • Nejabatkhah, F., S. Danyali, S. H. Hosseini, M. Sabahi, and S. M. Niapour. 2011. Modeling and control of a new three-input dc–dc boost converter for hybrid pv/fc/battery power system. IEEE Transactions on Power Electronics 27 (5):2309–24. doi:10.1109/TPEL.2011.2172465.
  • Rahimi, L. D., H. Gholizadeh, R. S. Shahrivar, and R. Faraji. 2021. An ultra high step-up DC–DC converter based on the boost, luo, and voltage doubler structure: mathematical expression, simulation, and experimental. IEEE Access, vol. 9, pp. 132011–24, doi: 10.1109/ACCESS.2021.3115259.
  • Ramanathan, G., and C. Bharatiraja (2022). Design of mono stage bridgeless converter for light electric vehicles charging. Materials Today: Proceedings, 52, 1530–36. Nitte, Karnataka, India.
  • Senthil Kumar, R., P. Suresh, M. Suresh, P. Hitesh, K. K. Sadasivuni, and Y. Noorollahi. 2022. A novel design of switched boost action based multiport converter using dsPIC controller for renewable energy applications. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (1):75–90. doi:10.1080/15567036.2021.1967522.
  • Singh, B., and R. Kushwaha. 2021. Power factor preregulation in interleaved luo converter-fed electric vehicle battery charger. IEEE Transactions on Industry Applications 57 (3):2870–82. May-June. doi:10.1109/TIA.2021.3061964.
  • Wang, L., H. Wang, M. Fu, J. Liang, and Y. Liu. 2023. A three-port energy router for grid-tied PV generation systems with optimized control methods. IEEE Transactions on Power Electronics 38 (1):1218–31. doi:10.1109/TPEL.2022.3202873.
  • Wu, Q., M. Wang, W. Zhou, X. Wang, and Q. Wang 2019. One zero-voltage- switching voltage-fed three-phase push-pull DC/DC converter for electric vehicle applications. 2019 IEEE Transportation Electrification Conference and Expo (ITEC. IEEE), 1–5. Detroit, Michigan, USA. doi:10.1109/ITEC.2019.8790607.
  • Ye, H., G. Jin, W. Fei, and N. Ghadimi (2020). High step-up interleaved DC/DC converter with high efficiency. Energy sources, Part A: recovery, utilization, and environmental effects, 1–20.
  • Zhang, Y., Q. Liu, Y. Gao, J. Li, and M. Sumner. 2019. Hybrid switched- capacitor/switched-quasi-Z-source bidirectional DC–DC converter with a wide voltage gain range for hybrid energy sources EVs. IEEE Transactions on Industrial Electronics 66 (4):2680–90. doi:10.1109/tie.2018.2850020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.