100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Large Eddy simulation of the effects of equivalence ratio fluctuations on swirling premixed flame

ORCID Icon, , , &
Pages 8478-8490 | Received 19 Jan 2023, Accepted 15 Apr 2023, Published online: 26 Jun 2023

References

  • Albayrak, A., and W. Polifke. 2017. An analytical model based on the G-equation for the response of technically premixed flames to perturbations of equivalence ratio. International Journal of Spray and Combustion Dynamics 10 (2):103–10. doi:10.1177/1756827717740776.
  • Balabanov, R., L. Usov, A. Troshin, V. Vlasenko, and V. Sabelnikov. 2022. A differential subgrid stress model and its assessment in large eddy simulations of non-premixed turbulent combustion. Applied Sciences 12 (17):8491. doi:10.3390/app12178491.
  • Bluemner, R., C. O. Paschereit, and K. Oberleithner. 2019. Generation and transport of equivalence ratio fluctuations in an acoustically forced swirl burner. Combustion and Flame 209:99–116. doi:10.1016/j.combustflame.2019.07.007.
  • Bobusch, B. C., B. Cosic, J. P. Moeck, and C. Oliver Paschereit. 2014. Optical measurement of local and global transfer functions for equivalence ratio fluctuations in a turbulent swirl flame. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 2014 (2):1–8. doi:10.1115/1.4025375.
  • Cosic, B., S. Terhaar, J. P. Moeck, and C. O. Paschereit. 2015. Response of a swirl-stabilized flame to simultaneous perturbations in equivalence ratio and velocity at high oscillation amplitudes. Combustion and Flame 162 (4):1046–62. doi:10.1016/j.combustflame.2014.09.025.
  • Freitag, M., M. Klein, M. Gregor, D. Geyer, C. Schneider, A. Dreizler, and J. Janicka. 2006. Mixing analysis of a swirling recirculating flow using DNS and experimental data. International Journal of Heat and Fluid Flow 27 (4):636–43. doi:10.1016/j.ijheatfluidflow.2006.02.020.
  • Fureby, C. 2021. Large Eddy Simulation of turbulent reacting flows with conjugate heat transfer and radiative heat transfer. Proceedings of the Combustion Institute 38 (2):3021–29. doi:10.1016/j.proci.2020.06.285.
  • Gregor, M. A., F. Seffrin, F. Fuest, Geyer, D., and Dreizler, A. Multi-scalar measurements in a premixed swirl burner using 1D Raman/Rayleigh scattering. Proceedings of the Combustion Institute, 2009. 32: 1739–46.
  • Joo, S., J. Choi, M. C. Lee, and N. Kim. 2021. Prognosis of combustion instability in a gas turbine combustor using spectral centroid & spread. Energy 224:120180. doi:10.1016/j.energy.2021.120180.
  • Kather, V., F. Lückoff, C. O Paschereit, and K. Oberleithner. 2021. Interaction of equivalence ratio fluctuations and flow fluctuations in acoustically forced swirl flames. International Journal of Spray and Combustion Dynamics 13 (1–2):72–95. doi:10.1177/17568277211015544.
  • Kim, W. W., S. Menon, and H. C. Mongia. 1999. Large Eddy Simulation of a gas turbine combustor flow. [in english]. Combustion Science and Technology 143 (1–6):25–62. doi:10.1080/00102209908924192.
  • Li, X., N. Zhou, B. Chen, Y. Xu, X. Li, W. Huang, X. Yuan, and X. Liu. 2021. The effects of pipe length on gas cloud explosion characteristics in the contraction pipe. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–14. doi:10.1080/15567036.2021.1971339.
  • O’ Connor, J., S. Hemchandra, and T. Lieuwen. 2016. Combustion instabilities in lean premixed systems. Lean Combustion 231–259. doi:10.1016/B978-0-12-804557-2.00007-9.
  • Polifke, W. 2020. Modeling and analysis of premixed flame dynamics by means of distributed time delays. Progress in Energy and Combustion Science 79:79. doi:10.1016/j.pecs.2020.100845.
  • Rashwan, S. S., A. Mohany, and I. Dincer. 2020. Investigation of self-induced thermoacoustic instabilities in gas turbine combustors. Energy 190:116362. doi:10.1016/j.energy.2019.116362.
  • Schneider, C., A. Dreizler, and J. Janicka. 2005. Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows. Flow, Turbulence and Combustion Formerly: Applied Scientific Research 74 (1):103–27. doi:10.1007/s10494-005-7369-z.
  • Sui, C. J., F. Yang, and W. J. Kong. 2016. Large eddy simulation of methane/air lifted flame with hot co-flow. Numerical Heat Transfer Part A-Applications 70 (3):282–92. doi:10.1080/10407782.2016.1173486.
  • Sui, C., J. Zhang, L. Zhang, X. Hu, and B. Zhang. 2021. Large eddy simulation of premixed hydrogen-rich gas turbine combustion based on reduced reaction mechanisms. Engineering Applications of Computational Fluid Mechanics 15 (1):798–814. doi:10.1080/19942060.2021.1918581.
  • Sujith, R. I., and V. R. Unni. 2021. Dynamical systems and complex systems theory to study unsteady combustion. Proceedings of the Combustion Institute 38 (3):3445–62. doi:10.1016/j.proci.2020.07.081.
  • Tomidokoro, T., T. Yokomori, H. G. Im, and T. Ueda. 2020. Characteristics of counterflow premixed flames with low frequency composition fluctuations. Combustion and Flame 212:13–24. doi:10.1016/j.combustflame.2019.10.004.
  • Valiev, D. M., M. Zhu, G. Bansal, H. Kolla, C. K. Law, and J. H. Chen. 2013. Pulsating instability of externally forced premixed counterflow flame. Combustion and Flame 160 (2):285–94. doi:10.1016/j.combustflame.2012.10.014.
  • Vogel, M., M. Bachfischer, J. Kaufmann, and T. Sattelmayer. 2021. Experimental investigation of equivalence ratio fluctuations in a lean premixed kerosene combustor. Experiments in Fluids 62 (5). doi:10.1007/s00348-021-03197-5.
  • Yang, M., C. Yuan, Y. Chen, and Y. Shao. 2020. Numerical study on turbulent dispersion of diesel sprays under ultrahigh injection pressure using large eddy simulation. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–14. doi:10.1080/15567036.2020.1820629.
  • Zettervall, N., K. Nordin-Bates, E. J. K. Nilsson, and C. Fureby. 2017. Large Eddy Simulation of a premixed bluff body stabilized flame using global and skeletal reaction mechanisms. Combustion and Flame 179:1–22. doi:10.1016/j.combustflame.2016.12.007.
  • Zhou, L. 2021. Studies on theory and modeling of droplet and spray combustion in China: A review. Acta Mechanica Sinica 37 (7):1031–40. doi:10.1007/s10409-021-01124-9.
  • Zhou, L. X. 2008. Development of SOM combustion model for Reynolds-averaged and large-eddy simulation of turbulent combustion and its validation by DNS. Science in China Series E: Technological Sciences 51 (8):1073–86. doi:10.1007/s11431-008-0157-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.