103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of streamlined container design on control melting time of Phase Change Materials

ORCID Icon &
Pages 8584-8600 | Received 19 Jan 2023, Accepted 18 May 2023, Published online: 27 Jun 2023

References

  • Abu-Hamdeh, N. H., O. Akbal, H. F. Oztop, A. M. Abusorrah, and M. M. Bayoumi. 2021. A three-dimensional computational analysis of ellipsoidal radiator with phase change. International Journal of Numerical Methods for Heat & Fluid Flows 31 (6):2072–87. cilt. doi:10.1108/HFF-07-2020-0429.
  • Abu-Mulaweh, H. I. 2003. A review of research on laminar mixed convection flow over backward-and forward- facing steps. International Journal of Thermal Sciences 42 (9):897–909. doi:10.1016/S1290-0729(03)00062-0.
  • Al-Maghalseh, M. M. 2017. Investigate the natural convection heat transfer in a PCM thermal storage system using ANSYS/FLUENT. Jordan Journal of Mechanical and Industrial Engineering 11 (4):217–23. cilt.
  • Arıcı, M., E. Tütüncü, Ç. Yıldız, and D. Li. 2020. Enhancement of PCM melting rate via internal fin and nanoparticles. International Journal 156:119845. cilt. doi:10.1016/j.ijheatmasstransfer.2020.119845.
  • Brent, A. D., V. R. Voller, and K. J. Reid. 1988. Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal. Numerical Heat Transfer 13 (3):297–318. doi:10.1080/10407788808913615.
  • Chamkha, A., A. Veismoradi, M. Ghalambaz, and P. Talebizadehsardari. 2020. Phase change heat transfer in an L-shape heatsink occupied with paraffin-copper metal foam. Applied Thermal Engineering 177:115493. cilt. doi:10.1016/j.applthermaleng.2020.115493.
  • Copertaro, B., P. Principi, and R. Fioretti. 2016. Thermal performance analysis of PCM in refrigerated container envelopes in the Italian context – Numerical modeling and validation. Applied Thermal Engineering 102:873–81. doi:10.1016/j.applthermaleng.2016.04.050.
  • Costantini, M., S. Risius, and C. Klein. 2015. Experimental investigation of the effect of forward-facing steps on boundary layer transition. Procedia IUTAM 14:152–62. ciltcilt. doi:10.1016/j.piutam.2015.03.036.
  • Dhaidan, N. S., S. A. Kokz, F. L. Rashid, A. K. Hussein, O. Younis, and F. N. Al-Mousaw. 2022. Review of solidification of phase change materials dispersed with nanoparticles in different containers. Journal of Energy Storage 51:104271. doi:10.1016/j.est.2022.104271.
  • Gavasane, A., A. Agrawal, and U. Bhandarkar. 2018. Study of rarefied gas flows in backward facing micro-step using direct simulation Monte Carlo. Vacuum 155:249–59. cilt. doi:10.1016/j.vacuum.2018.06.014.
  • Haddad, Z., F. Iachachene, and H. F. Oztop. 2021. Melting characteristics of organic phase change material in a wavy trapezoidal cavity. Journal of Molecular Liquids 332:112132. doi:10.1016/j.molliq.2019.112132.
  • Huang, S., J. Lu, and Y. Li. 2022. Numerical study on the influence of inclination angle on the melting behaviour of metal foam-PCM latent heat storage units. Energy 239:122489. doi:10.1016/j.energy.2021.122489.
  • Iachachene, F., Z. Haddad, H. F. Oztop, and E. Abu-Nada. 2019. Melting of phase change materials in a trapezoidal cavity: Orientation and nanoparticles effects. Journal of Molecular Liquids 292:110592. doi:10.1016/j.molliq.2019.03.051.
  • Kalidasan, K., R. Velkennedy, and P. R. Kanna. 2015. Laminar natural convection inside the open forward-facing stepped rectangular enclosure with a partition and time-variant temperature on the stepped top wall. International Communications in Heat and Mass Transfer 67:124–36. cilt. doi:10.1016/j.icheatmasstransfer.2015.05.027.
  • Kant, K., A. Shukla, and A. Sharma. 2016. Performance evaluation of fatty acids as phase change material for thermal energy storage. Journal of Energy Storage 6:153–62. cilt. doi:10.1016/j.est.2016.04.002.
  • Khanafer, K., B. Al-Azmi, A. Al-Shammari, and I. Pop. 2008. Mixed convection analysis of laminar pulsating flow and heat transfer over a backward-facing step. International Journal of Heat & Mass Transfer 51 (25–26):5785–5793. doi:10.1016/j.ijheatmasstransfer.2008.04.060.
  • Mahdi, M. S., A. A. Khadom, H. B. Mahood, M. A. R. Yaqup, J. M. Hussain, K. I. Salih, and H. A. Kazem. 2019. Effect of fin geometry on natural convection heat transfer in electrical distribution transformer: Numerical study and experimental validation. Thermal Science and Engineering Progress 14:100414. doi:10.1016/j.tsep.2019.100414.
  • Mahdi, M. S., H. B. Mahood, A. N. Campbell, and A. A. Khadom. 2021. Natural convection improvement of PCM melting in partition latent heat energy storage: Numerical study with experimental validation. Int Commun Heat Mass Transf 126:105463. doi:10.1016/j.icheatmasstransfer.2021.105463.
  • Mahmoudi, A. 2019. A scale analysis to study melting process driven by natural convection. Physica A: Statistical Mechanics & Its Applications 524:430–447. doi:10.1016/j.physa.2019.04.252.
  • Marinio, I., and P. Luchini. 2009. Adjoint analysis of the flow over a forward-facing step. Theoretical and Computational Fluid Dynamics 23 (1):37–54. doi:10.1007/s00162-008-0090-5.
  • Mbaye, M., and E. Bilgen. 2001. Phase change process by natural convection-diffusion in rectangular enclosures. Heat and Mass Transfer 37 (1):35–42. cilt. doi:10.1007/s002310000095.
  • Oró, E., L. Miró, C. Barreneche, I. Martorell, M. M. Farid, and L. F. Cabeza. 2013. Corrosion of metal and polymer containers for use in PCM cold storage. Applied Energy 109:449–53. doi:10.1016/j.apenergy.2012.10.049.
  • Parsazadeh, M., and X. Duan. 2018. Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit, Appl. Applied Energy 216:142–56. doi:10.1016/j.apenergy.2018.02.052.
  • Punniakodi, B. M. S., and R. Senthil. 2021. A review on container geometry and orientations of phase change materials for solar thermal systems. Journal of Energy Storage 36:102452. doi:10.1016/j.est.2021.102452.
  • Rao, A. N., J. Zhang, G. Minelli, B. Basara, and S. Krajnovic. 2019. Qualitative assessment of the bi-stable states in the wake of a finite-width double backward facing step. Journal of Wind Engineering & Industrial Aerodynamics 186:241–49. cilt. doi:10.1016/j.jweia.2019.01.007.
  • Riahi, S., W. Y. Saman, F. Bruno, M. Belusko, and N. H. S. Tay. 2017. Comparative study of melting and solidification processes in different configurations of shell and tube high temperature latent heat storage system. Solar Energys 150:363–74. cilt. doi:10.1016/j.solener.2017.04.061.
  • Rothan, Y. A. 2022a. Numerical approach for melting of paraffin inside a duct containing multi sinusoidal PCM containers. Journal of Petroleum Science and Engineering 212:110351. doi:10.1016/j.petrol.2022.110351.
  • Rothan, Y. A. 2022b. Thermal analysis for solidification of PCM including nanoparticles within a container. Case Studies in Thermal Engineering 33:101920. doi:10.1016/j.csite.2022.101920.
  • Sattari, H., A. Mohebbi, M. M. Afsahi, and A. A. Yancheshme. 2017. CFD simulation of melting process of phase change materials (PCMs) in a spherical capsule. International Journal of Refrigeration 73:209–18. cilt. doi:10.1016/j.ijrefrig.2016.09.007.
  • Selimefendigil, F., and H. F. Oztop. 2013. Numerical analysis of laminar pulsating flow at a backward facing step with an upper wall mounted adiabatic thin fin. Computers & Fluids 88:93–107. cilt. doi:10.1016/j.compfluid.2013.08.013.
  • Selimefendigil, F., and H. F. Öztop. 2019. Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. International Journal of Heat and Mass Transfer 129:265–77. doi:10.1016/j.ijheatmasstransfer.2018.09.101.
  • Sezgin, E. B. 2021. Computational analysis of melting process of Phase Change Material in a stepped closed cavity. Master thesis.
  • Surya, A., N. Nallusamy, B. Vishnu, and R. Girish. 2022. Comparative study of heat transfer enhancement in a latent heat thermal energy storage system using mild steel and stainless steel spherical PCM containers. Materials Today: Proceeding 62 (10). doi:10.1016/j.matpr.2022.03.568.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.