101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Strategies for heat recovery in a reverse flow reactor designed to lessen coal mine methane emissions test

, , , , &
Pages 8665-8685 | Received 06 Mar 2023, Accepted 25 Jun 2023, Published online: 03 Jul 2023

References

  • Banerjee, A., and A. V. Saveliev. 2018. High temperature heat extraction from counterflow porous burner. International Journal of Heat and Mass Transfer 127:436–43. doi:10.1016/j.ijheatmasstransfer.2018.08.027.
  • Contarin, F., A. V., Saveliev, A. A, Fridman, and Kennedy, L. A. 2003. A reciprocal flow filtration combustor with embedded heat exchangers: Numerical study. International Journal of Heat and Mass Transfer 46 (6):949–61. doi:10.1016/S0017-9310(02)00371-X.
  • Environmental Protection Agency (EPA). 2020. Coalbed methane outreach program (CMOP). Sources of coal mine methane.
  • Gao, P. F., and X. L. Gou. 2019. Experimental research on the thermal oxidation of ventilation air methane in a thermal reverse flow reactor. ACS Omega 4 (12):14886–94. doi:10.1021/acsomega.9b01573.
  • Gosiewski, K. 2004. Effective approach to cyclic steady state in the catalytic reverse-flow combustion of methane. Chemical Engineering Science 59 (19):4095–101. doi:10.1016/j.ces.2004.05.035.
  • Gosiewski, K., A. Pawlaczyk, and M. Jaschik. 2015. Energy recovery from ventilation air methane via reverse-flow reactors. Energy 92:13–23. doi:10.1016/j.energy.2015.06.004.
  • Gosiewski, K., and A. Pawlaczyk-Kurek. 2019. Aerodynamic CFD simulations of experimental and industrial thermal flow reversal reactors. Journal of Chemical Engineering 373:1367–79. doi:10.1016/j.cej.2019.03.274.
  • Gosiewski, K., and K. Warmuzinski. 2007. Effect of the mode of heat withdrawal on the asymmetry of temperature profiles in reverse-flow reactors. Catalytic combustion of methane as a test case. Chemical Engineering Science 62 (10):2679–89. doi:10.1016/j.ces.2007.02.013.
  • Karakurt, I., G. Aydin, and K. Aydiner. 2012. Sources and mitigation of methane emissions by sectors: A critical review. Renewable Energy 39 (1):40–48. doi:10.1016/j.renene.2011.09.006.
  • Kumaresh, S., and M. Y. Kim. 2019. Numerical investigation of catalytic combustion in a honeycomb monolith with lean methane and air premixtures over the platinum catalyst. International Journal of Thermal Sciences 138:304–13. doi:10.1016/j.ijthermalsci.2018.12.036.
  • Lan, B., and Y.-R. Li. 2018. Numerical study on thermal oxidation of lean coal mine methane in a thermal flow-reversal reactor. Journal of chemical engineering 351:922–29. doi:10.1016/j.cej.2018.06.153.
  • Li, Q. Z., B. Q., Lin, D. S., Yuan, and Chen, G. M . 2015. Demonstration and its validation for ventilation air methane (VAM) thermal oxidation and energy recovery project. Applied Thermal Engineering 90:75–85. doi:10.1016/j.applthermaleng.2015.06.089.
  • Mao, M. M., Y. Q. Liu, J. R. Shi, C. Y. Li, and Q. H. Zhang. 2022. Experimental study on control of flame inclination in a thermal flow reversal reactor with extra lean premixed methane/air intake. Fuel 318. doi:10.1016/j.fuel.2022.123722.
  • Marín, P., S. Ordóñez, and F. V. Díez. 2009. Procedures for heat recovery in the catalytic combustion of lean methane–air mixtures in a reverse flow reactor. Chemical Engineering Journal 147 (2–3):356–65. doi:10.1016/j.cej.2008.11.041.
  • National Oceanic and Atmospheric Administration (NOAA). 2023. The title of this report is Greenhouse gases continued to increase rapidly in 2022.
  • Pawlaczyk, A., and K. J. Gosiewski. 2013. Simplified kinetic model for thermal combustion of lean methane–air mixtures in a wide range of temperatures. International Journal of Chemical Reactor Engineering 11 (1):111–21. doi:10.1515/ijcre-2012-0074.
  • Pu, Z. Y., Y. Liu, H. Zhou, Huang, W. Z., Zheng, Y. F., and Li, X. N . 2017. Catalytic combustion of lean methane at low temperature over ZrO2-modified Co3O4 catalysts. Applied Surface Science 422:85–93. doi:10.1016/j.apsusc.2017.05.231.
  • Runyon, J., R. Marsh, P. Bowen, Pugh, D., Giles, A., and Morris, S. 2018. Lean methane flame stability in a premixed generic swirl burner: Isothermal flow and atmospheric combustion characterization. Experimental Thermal and Fluid Science 92:125–40. doi:10.1016/j.expthermflusci.2017.11.019.
  • Sun, P., B. Zheng, Y. Q. Liu, Tang, S., Zhang, K., Xu, J. G., and Bi, R. R. 2020. Effect of shunt honeycomb ceramics thickness on finned tube heat transfer in VAM oxidation for hydrogen production. International Journal of Hydrogen Energy 45 (39):20458–64. doi:10.1016/j.ijhydene.2019.11.138.
  • Wang, S., D. N. Gao, and S. D. Wang. 2014. Steady and transient characteristics of catalytic flow reverse reactor integrated with central heat exchanger. Industrial & Engineering Chemistry Research 53 (32):12644–54. doi:10.1021/ie501415b.
  • Wang, Y. F., W. J. Yang, J. H. Zhou, Yang, H. L., Yao, Y. Y., and Cen, K. F., 2019. Heterogeneous reaction characteristics and its effects on homogeneous combustion of methane/air mixture in microchannels II. Chemical analysis. Fuel 235:923–32. doi:10.1016/j.fuel.2018.08.097.
  • Yao, Z. X., and A. V. Saveliev. 2018. High efficiency high temperature heat extraction from porous media reciprocal flow burner: Time-averaged model. Applied Thermal Engineering 143:614–20. doi:10.1016/j.applthermaleng.2018.07.144.
  • Zheng, B., Y. Q. Liu, R. X. Liu, and Meng, J. 2015. Catalytic oxidation of coal mine ventilation air methane in a preheat catalytic reaction reactor. International Journal of Hydrogen Energy 40 (8):3381–87. doi:10.1016/j.ijhydene.2015.01.020.
  • Zheng, B., Y. Q., Liu, P., Sun, Meng, J., and Liu, R. X. 2019. Dehydrogenation characteristics of lean methane in a thermal reverse-flow reactor. International Journal of Hydrogen Energy 44 (11):5137–42. doi:10.1016/j.ijhydene.2018.08.109.
  • Zhou, Y. Q., Y. Q., Liu, Y. Y., Shi, Zhang, Y. Q., Li, Z. H., and Shi, J. R. 2023. Numerical investigation of extracted position characteristics in porous media with lean methane and air premixtures combustion. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2023.03.311
  • Zhou, Y. Q., Y. Y. Shi, Y. Q. Liu, P. Sun, and M. M. Mao. 2023. Experimental and simulation research on heat extraction characteristics from a pilot-scale reverse flow reactor for low-grade energy. Applied Thermal Engineering 220. doi:10.1016/j.applthermaleng.2022.119761.
  • Zhu, H. W., H. M., Dai, Z. W., Song, Wang, X. Y., Wang, Z. Q., Dai, H. C., and He, S. 2021. Improvement of hollow cylinders on the conversion of coal mine methane to hydrogen in packed bed burner. International Journal of Hydrogen Energy 46 (61):31439–51. doi:10.1016/j.ijhydene.2021.07.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.