84
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating the Effect of GNP, ZnO, and CuO Nanoparticles on the Tribological, Rheological, and Corrosion Behavior of Bio-based Mahua Oil

ORCID Icon, &
Pages 9081-9092 | Received 24 Mar 2023, Accepted 27 Jun 2023, Published online: 09 Jul 2023

References

  • Baskar, G., A. Gurugulladevi, T. Nishanthini, R. Aiswarya, and K. Tamilarasan. 2017. Optimization and kinetics of biodiesel production from mahua oil using manganese doped zinc oxide nanocatalyst. Renewable Energy 103:641–46. Elsevier Ltd. doi:10.1016/j.renene.2016.10.077.
  • Bertolini, R., A. G. Le Gong, and S. Bruschi. 2020. Graphene nanoplatelets-assisted minimum quantity lubrication in turning to enhance inconel 718 surface integrity. Procedia CIRP 87:71–76. Elsevier B.V. doi:10.1016/j.procir.2020.02.021.
  • Chaurasia, S. K., A. Kumar Sehgal, and N. Kumar Singh. 2020. Improved lubrication mechanism of chemically modified Mahua (Madhuca Indica) oil with addition of copper oxide nanoparticles. Journal of Bio- and Tribo-Corrosion 6 (3): Springer. doi:10.1007/s40735-020-00387-2.
  • Delgado-Tobón, A. E., W. Arnulfo Aperador-Chaparro, and Y. Gabriela Misnaza-Rodríguez. 2018. Evaluation of the lubricating power of chemical modified sesame oil additivated with Cu and Al 2 O 3 nanoparticles. DYNA (Colombia) 85 (207):93–100. Universidad Nacional de Colombia. doi:10.15446/dyna.v85n207.63189.
  • Del Río, L., M. José, M. J. G. Guimarey, J. I. Prado, L. Lugo, E. R. López, and M. J. P. Comuñas. 2022. Improving the tribological performance of a biodegradable lubricant adding graphene nanoplatelets as additives. Journal of Molecular Liquids 345:11–17. doi:10.1016/j.molliq.2021.117797.
  • Erhan, S. Z., B. K. Sharma, and J. M. Perez. 2006. Oxidation and low temperature stability of vegetable oil-based lubricants. Industrial Crops and Products 24 (3):292–99. doi:10.1016/j.indcrop.2006.06.008.
  • Gupta, H. S., R. Sehgal, and M. Farooq Wani. 2022. Tribological characterization of eco-friendly bio-based mahua and flaxseed oil through nanoparticles. Biomass Conversion and Biorefinery 123456789 (August): Springer Berlin Heidelberg. doi:10.1007/s13399-022-03174-w.
  • Heredia-Cancino, J., R. Carrillo-Torres, H. Munguía-Aguilar, and M. Álvarez-Ramos, 2020. An Innovative method to reduce oil waste using a sensor made of recycled material to evaluate engine oil life in automotive workshops. Environmental Science and Pollution Research 27(22)22:28104–12. Environmental Science and Pollution Research. 10.1007/s11356-020-09197-y.
  • Holmberg, K., P. Andersson, and A. Erdemir. 2012. Global energy consumption due to friction in passenger cars. Tribology International 47:221–34. Elsevier. doi:10.1016/j.triboint.2011.11.022.
  • Ioannis, C., S. Kalogeropoulou, and C. S. Psomopoulos, 2021. A review on the requirements for environmentally friendly insulating oils used in high-voltage equipment under the eco design framework. Environmental Science and Pollution Research 28(26)26:33828–36. Environmental Science and Pollution Research. 10.1007/s11356-020-09601-7.
  • Jeevan, T. P., S. R. Jayaram, A. Afzal, H. S. Ashrith, M. Elahi, M. Soudagar, and M. A. Mujtaba. 2021. Machinability of AA6061 aluminum alloy and AISI 304L stainless steel using nonedible vegetable oils applied as minimum quantity lubrication. Journal of the Brazilian Society of Mechanical Sciences and Engineering 43 (3):1–18. Springer Berlin Heidelberg. doi:10.1007/s40430-021-02885-x.
  • Kole, M., and T. K. Dey. 2011. Effect of aggregation on the viscosity of copper oxide-gear oil nanofluids. International Journal of Thermal Sciences 50 (9):1741–47. doi:10.1016/j.ijthermalsci.2011.03.027.
  • Kotia, A., G. Kumar Ghosh, I. Srivastava, P. Deval, and S. Kumar Ghosh. 2019. Mechanism for improvement of friction/wear by using Al2O3 and SiO2/Gear oil nanolubricants. Journal of Alloys and Compounds 782:592–99. Elsevier B.V. doi:10.1016/j.jallcom.2018.12.215.
  • Malinowska, M. 2019. The full or partial replacement of commercial marine engine oil with bio oil, on the example of linseed oil. Journal of KONES 26 (3):129–35. Walter de Gruyter GmbH:. doi:10.2478/kones-2019-0066.
  • Mousavi, S. B., S. Zeinali Heris, and P. Estellé. 2020. Experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant. Scientific Reports 10 (1):5813. doi:10.1038/s41598-020-62830-1.
  • Mushtaq, Z., and M. Hanief. 2021. Evaluation of tribological performance of jatropha oil modified with molybdenum disulphide micro-particles for steel–steel contacts. Jurnal Tribologi 28 (2):129–43. doi:10.1115/1.4047752.
  • Pooja, G., G. D. T. Ajay Kumar, P. K. Arya, and A. K. Jain. 2017. Investigating efficacy of Cu Nano-particles as additive for bio-lubricants. Macromolecular Symposia 376 (1):1700010. doi:10.1002/masy.201700010.
  • Rahim, E. A., and H. Sasahara. 2011. Investigation of tool wear and surface integrity on MQl machining of Ti-6AL-4V using biodegradable oil. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 225 (9):1505–11. doi:10.1177/0954405411402554.
  • Rajaganapathy, C., D. Vasudevan, and S. Murugapoopathi. 2021. Tribological and rheological properties of palm and brassica oil with inclusion of CuO and TiO2 additives. Materials Today: Proceedings 37 (Part 2):207–13. Elsevier Ltd. doi:10.1016/j.matpr.2020.05.032.
  • Randles, S. J. 1992. Environmentally considerate ester lubricants for the automotive and engineering industries. Journal of Synthetic Lubrication 9 (2):145–61. doi:10.1002/jsl.3000090205.
  • Sharma, B. K., A. Adhvaryu, and S. Z. Erhan. 2009. Friction and wear behavior of thioether hydroxy vegetable oil. Tribology International 42 (2):353–58. doi:10.1016/j.triboint.2008.07.004.
  • Sharma, U. C., and S. Sachan. 2019. Friction and wear behavior of karanja oil derived biolubricant base oil. SN Applied Sciences 1 (7):1–11. Springer International Publishing. doi:10.1007/s42452-019-0706-y.
  • Sikdar, S., and H. Rahman. 2021. Synergistic study of solid lubricant nano-additives incorporated in canola oil for enhancing energy efficiency and sustainability. Sustainability 14 (1):290. doi:10.3390/su14010290.
  • Singh, Y., E. Abd Rahim, N. Kumar Singh, A. Sharma, A. Singla, and A. Palamanit. 2022. Friction and wear characteristics of chemically modified mahua (madhuca indica) oil based lubricant with SiO2 nanoparticles as additives. Wear 508-509 (November):204463–509. Elsevier B.V.:204463. doi:10.1016/j.wear.2022.204463.
  • Singh, Y., A. Sharma, and A. Singla. 2019. Non-edible vegetable oil–based feedstocks capable of bio-lubricant production for automotive sector applications—a review. Environmental Science and Pollution Research 26 (15):14867–82. Springer Verlag. doi:10.1007/s11356-019-05000-9.
  • Suhane, A., A. Rehman, and H. K. Khaira. 2013. Tribological investigation of mahua oil based lubricant for maintenance applications. International Journal of Engineering 3 (4):2367–71.
  • Suresha, B., G. Hemanth, Ananthapadmanabha, and G. Kulkarni. 2020. Role of graphene nanoplatelets on tribological behaviour of madhuca indica oil. In AIP Conference Proceedings. Vol. 2247. American Institute of Physics Inc. doi:10.1063/5.0004145.
  • Thottackkad, M. V., R. Krishnan Perikinalil, and P. Nair Kumarapillai. 2012. Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles. International Journal of Precision Engineering and Manufacturing 13 (1):111–16. doi:10.1007/s12541-012-0015-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.