146
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Effects of CeO2 nanoparticles on engine features, tribology behaviors, and environment

, , , ORCID Icon, & ORCID Icon
Pages 8791-8822 | Received 24 Apr 2023, Accepted 15 Jun 2023, Published online: 07 Jul 2023

References

  • Aalam, C. S., C. G. Saravanan, and M. Kannan. 2015. Experimental investigations on a CRDI system assisted diesel engine fuelled with aluminium oxide nanoparticles blended biodiesel. Alexandria Eng J 54 (3):351–58. doi:10.1016/j.aej.2015.04.009.
  • Abedin, M. J., A. Imran, H. H. Masjuki, M. A. Kalam, S. A. Shahir, M. Varman, and A. M. Ruhul. 2016. An overview on comparative engine performance and emission characteristics of different techniques involved in diesel engine as dual-fuel engine operation. Renewable and Sustainable Energy Reviews 60:306–16. doi:10.1016/j.rser.2016.01.118.
  • Afzal, N. S., A. V. SH, Ü. Ağbulut, A. A. Alahmadi, A. C. Gowda, A. C. Gowda, M. Alwetaishi, S. Shaik, and A. T. Hoang. 2023. Poultry fat biodiesel as a fuel substitute in diesel-ethanol blends for DI-CI engine: Experimental, modeling and optimization. Energy 270:126826. doi:10.1016/j.energy.2023.126826.
  • Aghbashlo, M., M. Tabatabaei, P. Mohammadi, M. Mirzajanzadeh, M. Ardjmand, and A. Rashidi. 2016. Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine. Renew Energy 93:353–68. doi:10.1016/j.renene.2016.02.077.
  • Akram, S., M. W. Mumtaz, M. Danish, H. Mukhtar, A. Irfan, S. A. Raza, Z. Wang, and M. Arshad. 2019. Impact of cerium oxide and cerium composite oxide as nano additives on the gaseous exhaust emission profile of waste cooking oil based biodiesel at full engine load conditions. Renew Energy 143:898–905. doi:10.1016/j.renene.2019.05.025.
  • Alcalde-Santiago, V., A. Davó-Quiñonero, D. Lozano-Castelló, and A. Bueno-López. 2018. On the soot combustion mechanism using 3DOM ceria catalysts. Applied Catalysis B, Environmental 234:187–97. doi:10.1016/j.apcatb.2018.04.023.
  • Ali, H. M., H. Babar, T. R. Shah, M. U. Sajid, M. A. Qasim, and S. Javed. 2018. Preparation techniques of TiO2 nanofluids and challenges: A review. Applied Science 8 (4):587. doi:10.3390/app8040587.
  • Ali, M. K. A., and H. Xianjun. 2022. Exploring the lubrication mechanism of CeO2 nanoparticles dispersed in engine oil by bis(2-ethylhexyl) phosphate as a novel antiwear additive. Tribology International 165:107321. doi:10.1016/j.triboint.2021.107321.
  • Alves-Fortunato, M., E. Ayoub, K. Bacha, A. Mouret, and C. Dalmazzone. 2020. Fatty Acids Methyl Esters (FAME) autoxidation: New insights on insoluble deposit formation process in biofuels. Fuel 268:117074. doi:10.1016/j.fuel.2020.117074.
  • Annamalai, M., B. Dhinesh, K. Nanthagopal, P. SivaramaKrishnan, J. Isaac JoshuaRamesh Lalvani, M. Parthasarathy, and K. Annamalai. 2016. An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel. Energy Conversion and Management 123:372–80. doi:10.1016/j.enconman.2016.06.062.
  • Appavu, P., and M. Venkata Ramanan. 2020. Study of emission characteristics of a diesel engine using cerium oxide nanoparticle blended pongamia methyl ester. International Journal of Ambient Energy 41 (5):524–27. doi:10.1080/01430750.2018.1477063.
  • Atarod, P., E. Khlaife, M. Aghbashlo, M. Tabatabaei, H. Mobli, H. Mobli, M. H. Nadian, H. Hosseinzadeh-Bandbafha, P. Mohammadi, T. Roodbar Shojaei, et al. 2021. Soft computing-based modeling and emission control/reduction of a diesel engine fueled with carbon nanoparticle-dosed water/diesel ‎emulsion fuel. Journal of Hazardous Materials 407:124369. doi:10.1016/j.jhazmat.2020.124369.
  • Bai, G., J. Wang, Z. Yang, H. Wang, Z. Wang, and S. Yang. 2014. Preparation of a highly effective lubricating oil additive–ceria/graphene composite. RSC Advances 4 (87):47096–105. doi:10.1039/C4RA09488C.
  • Balamurugan, S., and V. Sajith. 2017. Experimental investigation on the stability and abrasive action of cerium oxide nanoparticles dispersed diesel. Energy 131:113–24. doi:10.1016/j.energy.2017.05.032.
  • Basha, J. S., and R. B. Anand. 2011. An experimental study in a CI engine using nanoadditive blended water–diesel emulsion fuel. International Journal of Green Energy 8 (3):332–48. doi:10.1080/15435075.2011.557844.
  • Basha, J. S., and R. B. Anand. 2013. The influence of nano additive blended biodiesel fuels on the working characteristics of a diesel engine. Journal of the Brazilian Society of Mechanical Sciences and Engineering Is. doi:10.1007/s40430-013-0023-0.
  • Basu, S., A. K. Agarwal, A. Mukhopadhyay, and C. Patel. 2018. Introduction to Droplets and Sprays: Applications for Combustion and Propulsion 3–6. doi: 10.1007/978-981-10-7449-3_1.
  • Batley, G. E., B. Halliburton, J. K. Kirby, C. L. Doolette, D. Navarro, M. J. Mclaughlin, and C. Veitch. 2013. Characterization and Ecological Risk Assessment of Nanoparticulate CeO2 as a Diesel Fuel Catalyst. Environmental Toxicology & Chemistry / SETAC 32 (8):1896–905. doi:10.1002/etc.2246.
  • Bour, A., F. Mouchet, S. Cadarsi, J. Silvestre, L. Verneuil, D. Baqué, E. Chauvet, J.-M. Bonzom, C. Pagnout, H. Clivot, et al. 2015. Toxicity of CeO2 nanoparticles on a freshwater experimental trophic chain: A study in environmentally relevant conditions through the use of mesocosms. Nanotoxicology 1–11. doi:10.3109/17435390.2015.1053422.
  • Bui, V. G., T. M. Tu Bui, H. C. Ong, S. Nižetić, V. H. Bui, A. T. Hoang, A. E. Atabani, L. Štěpanec, L. H. Phu Pham, A. T. Hoang, et al. 2022. Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system. Energy 252:124052. doi:10.1016/j.energy.2022.124052.
  • Cassee, F. R., E. C. Van Balen, C. Singh, D. Green, H. Muijser, J. Weinstein, and K. Dreher. 2011. Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Critical Reviews in Toxicology 41 (3):213–29. doi:10.3109/10408444.2010.529105.
  • Celik, M., and S. Uslu. 2023. Experimental investigation of diesel engine running on diesel fuel supplemented with CeO 2 metal nanoparticles. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 45 (1):246–62. doi:10.1080/15567036.2023.2168093.
  • Chaichan, M. T., A. A. H. Kadhum, and A. A. Al-Amiery. 2017. Novel technique for enhancement of diesel fuel: Impact of aqueous alumina nano-fluid on engine’s performance and emissions. Case Studies in Thermal Engineering 10:611–20. doi:10.1016/j.csite.2017.11.006.
  • Chandran, M., R. Chinnappan, P. Ang, and C. K. Ang. 2020. Effect of nano cerium oxide additive with tire oil blends on diesel engine combustion and emissions parameters with soot morphology analysis. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–13. doi:10.1080/15567036.2020.1810179.
  • Chandrasekaran, V., M. Arthanarisamy, P. Nachiappan, S. Dhanakotti, and B. Moorthy. 2016. The role of nano additives for biodiesel and diesel blended transportation fuels. Transp Res Part D Transp Environ 46:145–56. doi:10.1016/j.trd.2016.03.015.
  • Cherednichenko, O., S. Serbin, M. Tkach, J. Kowalski, and D. Chen. 2022. Mathematical modelling of marine power plants with thermochemical fuel treatment. Polish Maritime Research 29 (3):99–108. doi:10.2478/pomr-2022-0030.
  • Collin, B., M. Auffan, A. C. Johnson, I. Kaur, A. A. Keller, A. Lazareva, J. R. Lead, X. Ma, R. C. Merrifield, C. Svendsen, et al. 2014. Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environmental Science Nano. 1(6):533–48. doi:10.1039/c4en00149d.
  • Constantine, D. A., Y. Wang, and E. J. Terrell. 2013. Effect of reciprocation frequency on friction and wear of vibrating contacts lubricated with soybean-based B100 biodiesel. Tribology Letters 50 (2):279–85. doi:10.1007/s11249-013-0119-9.
  • Cornelis, G., B. Ryan, M. J. McLaughlin, J. K. Kirby, D. Beak, and D. Chittleborough. 2011. Solubility and batch retention of CeO2 nanoparticles in soils. Environmental Science and Technology 45 (7):2777–82. doi:10.1021/es103769k.
  • Das, M., M. Sarkar, A. Datta, and A. K. Santra. 2018. An experimental study on the combustion, performance and emission characteristics of a diesel engine fuelled with diesel-castor oil biodiesel blends. Renew Energy 119:174–84. doi:10.1016/j.renene.2017.12.014.
  • De Poures, M. V., D. Dillikannan, G. Kaliyaperumal, S. Thanikodi, Ü. Ağbulut, A. T. Hoang, Z. Mahmoud, S. Shaik, C. A. Saleel, A. Afzal, et al. 2023. Collective influence and optimization of 1-hexanol, fuel injection timing, and EGR to control toxic emissions from a light-duty agricultural diesel engine fueled with diesel/waste cooking oil methyl ester blends. Process Safety and Environmental Protection 172:738–52. doi:10.1016/j.psep.2023.02.054.
  • Dhana Raju, V., P. S. Kishore, K. Nanthagopal, and B. Ashok. 2018. An experimental study on the effect of nanoparticles with novel tamarind seed methyl ester for diesel engine applications. Energy Conversion & Management 164:655–66. doi:10.1016/j.enconman.2018.03.032.
  • Dhanasekar, K., M. Sridaran, M. Arivanandhan, and R. Jayavel. 2019. A facile preparation, performance and emission analysis of pongamia oil based novel biodiesel in diesel engine with CeO2: Gd nanoparticles. Fuel 255:115756. doi:10.1016/j.fuel.2019.115756.
  • Dhinesh, B., and M. Annamalai. 2018. A study on performance, combustion and emission behaviour of diesel engine powered by novel nano nerium oleander biofuel. Journal of Cleaner Production 196:74–83. doi:10.1016/j.jclepro.2018.06.002.
  • Dinesha, P., S. Kumar, and M. A. Rosen. 2021. Effects of particle size of cerium oxide nanoparticles on the combustion behavior and exhaust emissions of a diesel engine powered by biodiesel/diesel blend. Biofuel Research Journal 8 (2):1374–83. doi:10.18331/BRJ2021.8.2.3.
  • Doan, Q. B., X. P. Nguyen, V. V. Pham, T. M. H. Dong, M. T. Pham, and T. S. Le. 2022. Performance and emission characteristics of diesel engine using ether additives: a review. International Journal of Renewable Energy Development 11 (1):255–74. doi:10.14710/ijred.2022.42522.
  • Domachowski, Z. 2021. Minimizing greenhouse gas emissions from ships using a pareto multi-objective optimization approach. Polish Maritime Research 28 (2):96–101. doi:10.2478/pomr-2021-0026.
  • Domenech, P., T. Perez, A. Saldarini, P. Uad, and C. G. Musso. 2017. Kidney–lung pathophysiological crosstalk: Its characteristics and importance. International Urology and Nephrology 49 (7):1211–15. doi:10.1007/s11255-017-1585-z.
  • Du, P., G. Chen, S. Song, H. Chen, J. Li, and Y. Shao. 2016. Tribological Properties of Muscovite, CeO 2 and Their Composite Particles as Lubricant Additives. Tribology Letters 62 (2):29. doi:10.1007/s11249-016-0676-9.
  • Earnest, J., A. Raghavan, R. George Roy, C. P. Koshy, and C. P. Koshy. 2022. Study of engine performance and emission characteristics of diesel engine using cerium oxide nanoparticles blended orange peel oil methyl ester. Energy Nexus 8:100150. doi:10.1016/j.nexus.2022.100150.
  • Ebrahimian, F., J. F. M. Denayer, A. Mohammadi, B. Khoshnevisan, and K. Karimi. 2023. A critical review on pretreatment and detoxification techniques required for biofuel production from the organic fraction of municipal solid waste. Bioresource Technology 368:128316. doi:10.1016/j.biortech.2022.128316.
  • EL-Seesy, A. I., H. Hassan, and S. Ookawara. 2018. Performance, combustion, and emission characteristics of a diesel engine fueled with Jatropha methyl ester and graphene oxide additives. Energy Conversion and Management 166:674–86. doi:10.1016/j.enconman.2018.04.049.
  • Erdemir, A., O. Ozturk, M. Alzoubi, J. Woodford, L. Ajayi, and G. Fenske. 2000. Near-frictionless carbon coatings for use in fuel injectors and pump systems operating with low-sulfur diesel fuels. SAE Trans 109 (3):506–17.
  • Fayad, M. A., A. M. Abed, S. H. Omran, A. A. Jaber, A. A. Radhi, H. A. Dhahad, M. T. Chaichan, and T. Yusaf. 2022. Influence of Renewable Fuels and Nanoparticles Additives on Engine Performance and Soot Nanoparticles Characteristics. International Journal of Renewable Energy Development 11 (4):1068–77. doi:10.14710/ijred.2022.45294.
  • Fernández, I. A., M. R. Gómez, J. R. Gómez, and L. M. López-González. 2020. Generation of H2 on board lng vessels for consumption in the propulsion system. Polish Maritime Research 27 (1):83–95. doi:10.2478/pomr-2020-0009.
  • Feroskhan, M., S. Ismail, S. Gosavi, P. Tankhiwale, and Y. Khan. 2019. Optimization of performance and emissions in a biogas–diesel dual fuel engine with cerium oxide nanoparticle addition. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233 (5):1178–93. doi:10.1177/0954407018764165.
  • Garaud, M., M. Auffan, S. Devin, V. Felten, C. Pagnout, S. Pain-Devin, O. Proux, F. Rodius, B. Sohm, and L. Giamberini. 2016. Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha. Nanotoxicology 10 (7):935–44. doi:10.3109/17435390.2016.1146363.
  • Garnett, M. C., and P. Kallinteri. 2006. Nanomedicines and nanotoxicology: Some physiological principles. Occupational Medicine 56 (5):307–11. doi:10.1093/occmed/kql052.
  • Gatti, A. M. 2004. Biocompatibility of micro- and nano-particles in the colon. Part II. Biomaterials 25 (3):385–92. doi:10.1016/S0142-9612(03)00537-4.
  • Ghaednia, H., and R. L. Jackson. 2013. The effect of nanoparticles on the real area of contact, friction, and wear. Journal of Tribology 135 (4). doi:10.1115/1.4024297.
  • Ghaednia, H., R. L. Jackson, and J. M. Khodadadi. 2015. Experimental analysis of stable CuO nanoparticle enhanced lubricants. Journal of Experimental Nanoscience 10 (1):1–18. doi:10.1080/17458080.2013.778424.
  • Ghaemi, M. H. 2021. Performance and Emission Modelling and Simulation of Marine Diesel Engines using Publicly Available Engine Data. Polish Maritime Research 28 (4):63–87. doi:10.2478/pomr-2021-0050.
  • Ghanbari, M., G. Najafi, B. Ghobadian, T. Yusaf, A. P. Carlucci, and M. Kiani Deh Kiani. 2017. Performance and emission characteristics of a CI engine using nano particles additives in biodiesel-diesel blends and modeling with GP approach. Fuel 202:699–716. doi:10.1016/j.fuel.2017.04.117.
  • Grulke, E., K. Reed, M. Beck, X. Huang, A. Cormack, and S. Seal. 2014. Nanoceria: Factors affecting its pro- and anti-oxidant properties. Environmental Science Nano 1 (5):429–44. doi:10.1039/c4en00105b.
  • Guillén-Hurtado, N., J. Giménez-Mañogil, J. C. Martínez-Munuera, A. Bueno-López, and A. García-García. 2020. Study of Ce/Pr ratio in ceria-praseodymia catalysts for soot combustion under different atmospheres. Applied Catalysis A, General 590:117339. doi:10.1016/j.apcata.2019.117339.
  • Hajjari, M., M. Ardjmand, and M. Tabatabaei. 2014. Experimental investigation of the effect of cerium oxide nanoparticles as a combustion-improving additive on biodiesel oxidative stability: Mechanism. RSC Advances 4 (28):14352. doi:10.1039/c3ra47033d.
  • Hawi, M., A. Elwardany, M. Ismail, and M. Ahmed. 2019. Experimental investigation on performance of a compression ignition engine fueled with waste cooking oil biodiesel–diesel blend enhanced with iron-doped cerium oxide nanoparticles. Energies 12 (5):798. doi:10.3390/en12050798.
  • Hoang, A. T. 2021a. Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review. Fuel Processing Technology 218:106840. doi:10.1016/j.fuproc.2021.106840.
  • Hoang, A. T. 2021b. Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system. Journal of Marine Engineering & Technology 20:299–311. doi:10.1080/20464177.2018.1532734.
  • Hoang, A. T., M. Tabatabaei, M. Aghbashlo, A. P. Carlucci, A. I. Ölçer, A. T. Le, and A. Ghassemi. 2021. Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. Renewable and Sustainable Energy Reviews 135:110204. doi:10.1016/j.rser.2020.110204.
  • Hoang, A. T. V. Viet Pham. 2021. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renewable and Sustainable Energy Reviews 148:111265. doi:10.1016/j.rser.2021.111265.
  • Hoseini, S. S., G. Najafi, B. Ghobadian, R. Mamat, M. T. Ebadi, and T. Yusaf. 2018. Novel environmentally friendly fuel: The effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel. Renew Energy 125:283–94. doi:10.1016/j.renene.2018.02.104.
  • Hosseini, S. H., A. Taghizadeh-Alisaraei, B. Ghobadian, and A. Abbaszadeh-Mayvan. 2017. Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine. Energy 124:543–52. doi:10.1016/j.energy.2017.02.109.
  • Hussain, S., F. Al-Nsour, A. B. Rice, J. Marshburn, B. Yingling, Z. Ji, J. I. Zink, N. J. Walker, and S. Garantziotis. 2012. Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. Agricultural Science & Technology Nano 6 (7):5820–29. doi:10.1021/nn302235u.
  • Hussain, F., M. E. M. Soudagar, A. Afzal, M. A. Mujtaba, I. M. Rizwanul Fattah, B. Naik, M. H. Mulla, I. A. Badruddin, T. M. Y. Khan, V. D. Raju, et al. 2020. Enhancement in combustion, performance, and emission characteristics of a diesel engine fueled with Ce-ZnO nanoparticle additive added to soybean biodiesel blends. Energies. 13(17):1–20. doi:10.3390/en13174578.
  • Inbanaathan, P. V., B. Dhinesh, and U. Tamilarasan. 2020. Experimental Investigation of Performance and Emission Characteristics of Diesel Blended with Palm Methyl Ester Along with Alumina Nano-Additive Using D.I. Diesel Engine. In Bioresour. Util. Bioprocess, 151–66. Singapore: Springer Singapore. doi:10.1007/978-981-15-1607-8_15.
  • Institute HE. 2001. Evaluation of human health risk from cerium added to diesel fuel. Health Effects Institute. 1–64
  • Jeon, J., J. T. Lee, and S. Park. 2016. Nitrogen Compounds (NO, NO2, N2O, and NH3) in NO x Emissions from Commercial EURO VI Type Heavy-Duty Diesel Engines with a Urea-Selective Catalytic Reduction System. Energy & Fuels 30 (8):6828–34. doi:10.1021/acs.energyfuels.6b01331.
  • Jeyakumar, N., D. Balasubramanian, M. Sankaranarayanan, K. Karuppasamy, M. Wae-Hayee, V. V. Le, V. D. Tran, and A. T. Hoang. 2023. Using Pithecellobium Dulce seed-derived biodiesel combined with Groundnut shell nanoparticles for diesel engines as a well-advised approach toward sustainable waste-to-energy management. Fuel 337:127164. doi:10.1016/j.fuel.2022.127164.
  • JIANG, S.-Y., B.-T. TENG, J.-H. YUAN, X.-W. GUO, and M.-F. LUO. 2009. Adsorption and oxidation of CO over CeO2 (111) surface. 25 (8):1629–34. doi:10.3866/PKU.WHXB20090807.
  • Jiao, D., S. Zheng, Y. Wang, R. Guan, and B. Cao. 2011. The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Applied Surface Science 257 (13):5720–25. doi:10.1016/j.apsusc.2011.01.084.
  • Jiaqiang, E., Z. Zhang, J. Chen, M. H. Pham, X. Zhao, Q. Peng, Zhang, B., and Yin, Z . 2018. Performance and emission evaluation of a marine diesel engine fueled by water biodiesel-diesel emulsion blends with a fuel additive of a cerium oxide nanoparticle. Energy Conversion and Management. doi:10.1016/j.enconman.2018.05.073.
  • Johansen, K., S. Dahl, G. Mogensen, S. Pehrson, J. Schramm, and A. Ivarsson. 2007. Novel base metal-palladium catalytic diesel filter coating with NO2 reducing properties. 2007-01-1921, SAE Technical Paper.
  • Jung, H., D. B. Kittelson, and M. R. Zachariah. 2005. The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation. Combustion & Flame 142 (3):276–88. doi:10.1016/j.combustflame.2004.11.015.
  • Kalaimurugan, K., S. Karthikeyan, M. Periyasamy, and G. Mahendran. 2020. Emission analysis of CI engine with CeO2 nanoparticles added neochloris oleoabundans biodiesel-diesel fuel blends. Materials Today: Proceedings 33:2877–81. doi:10.1016/j.matpr.2020.02.777.
  • Karthikeyan, S., A. Elango, and A. Prathima. 2016. The effect of cerium oxide additive on the performance and emission characteristics of a CI engine operated with rice bran biodiesel and its blends. International Journal of Green Energy 13 (3):267–73. doi:10.1080/15435075.2014.952419.
  • Kashyap, A., and A. P. Harsha. 2016. Tribological studies on chemically modified rapeseed oil with CuO and CeO2 nanoparticles. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 230 (12):1562–71. doi:10.1177/1350650116641328.
  • Kegl, T., A. Kovač Kralj, M. Kegl, and B. Kegl. 2020. Nanomaterials for Environmental Application. Cham. Springer International Publishing. doi:10.1007/978-3-030-54708-0.
  • Kegl, T., A. K. Kralj, M. Kegl, and B. Kegl. 2020. Nanomaterials for Environmental Application. Green Energy and Technology, 1–173. Switzerland: Springer Nature Switzerland AG.
  • Kelz, M. B., G. W. Dent, S. Therianos, P. G. Marciano, T. K. McIntosh, P. D. Coleman, and J. H. Eberwine. 2002. Single-Cell Antisense RNA Amplification and Microarray Analysis as a Tool for Studying Neurological Degeneration and Restoration. Science of Aging Knowledge Environment 2002 (1). doi:10.1126/sageke.2002.1.re1.
  • Khalife, E., M. Tabatabaei, B. Najafi, S. M. Mirsalim, A. Gharehghani, P. Mohammadi, M. Aghbashlo, A. Ghaffari, Z. Khounani, T. Roodbar Shojaei, et al. 2017. A novel emulsion fuel containing aqueous nano cerium oxide additive in diesel–biodiesel blends to improve diesel engines performance and reduce exhaust emissions: Part I – Experimental analysis. Fuel 207:741–50. doi:10.1016/j.fuel.2017.06.033.
  • Kim, B., M. Murayama, B. P. Colman, and M. F. Hochella. 2012. Characterization and environmental implications of nano- and larger TiO 2 particles in sewage sludge, and soils amended with sewage sludge. Journal of Environmental Monitoring: JEM 14 (4):1129. doi:10.1039/c2em10809g.
  • Kitchin, K. T., E. Grulke, B. L. Robinette, and B. T. Castellon. 2014. Metabolomic effects in HepG2 cells exposed to four TiO 2 and two CeO 2 nanomaterials. Environmental Science Nano 1 (5):466–77. doi:10.1039/C4EN00096J.
  • Korczewski, Z. 2022. Energy and Emission Quality Ranking of Newly Produced Low-Sulphur Marine Fuels. Polish Maritime Research 29 (4):77–87. doi:10.2478/pomr-2022-0045.
  • Kowalski, J., W. Leśniewski, D. Piątek, and D. C. Przybylska. 2021. Assessing the Potential Replacement of Mineral Oil with Environmentally Acceptable Lubricants in a Stern Tube Bearing: An Experimental Analysis of Bearing Performance. Polish Maritime Research 28 (4):160–66. doi:10.2478/pomr-2021-0058.
  • Kuang, X., B. Yin, B. Xu, H. Jia, X. Kong, and X. Hua. 2021. Effects of Diesel Fuel Nano-Additives on Friction and Wear Properties of Precision Coupled Parts of a Diesel Engine Fuel Injection System. Tribology Transactions 64 (1):21–30. doi:10.1080/10402004.2020.1775918.
  • Kumar, M. V., A. V. Babu, and P. R. Kumar. 2019. Influence of metal-based cerium oxide nanoparticle additive on performance, combustion, and emissions with biodiesel in diesel engine. Environmental Science and Pollution Research 26 (8):7651–64. doi:10.1007/s11356-018-04075-0.
  • Kumar, A., S. Das, P. Munusamy, W. Self, D. R. Baer, D. C. Sayle, and S. Seal. 2014. Behavior of nanoceria in biologically-relevant environments. Environmental Science Nano 1 (6):516–32. doi:10.1039/c4en00052h.
  • Kumar, S., P. Dinesha, C. M. Ajay, and P. Kabbur. 2020. Combined effect of oxygenated liquid and metal oxide nanoparticle fuel additives on the combustion characteristics of a biodiesel engine operated with higher blend percentages. Energy 197:117194. doi:10.1016/j.energy.2020.117194.
  • Kumar, S., P. Dinesha, and M. A. Rosen. 2019. Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy 185:1163–73. doi:10.1016/j.energy.2019.07.124.
  • Kumar Patel, H., and S. Kumar. 2017. Experimental analysis on performance of diesel engine using mixture of diesel and bio-diesel as a working fuel with aluminum oxide nanoparticle additive. Thermal Science and Engineering Progress 4:252–58. doi:10.1016/j.tsep.2017.09.011.
  • Labeckas, G., S. Slavinskas, J. Rudnicki, and R. Zadrąg. 2018. The Effect of Oxygenated Diesel-N-Butanol Fuel Blends on Combustion, Performance, and Exhaust Emissions of a Turbocharged CRDI Diesel Engine. Polish Maritime Research 25 (1):108–20. doi:10.2478/pomr-2018-0013.
  • Lakhera, A., N. Kumar, A. Sharma, A. Saxena, A. K. Padap, A. K. Yadav, and V. K. Dwivedi. 2022. Optimization of diesel engine performance and emission characteristics with cerium oxide nanoparticles mixed waste cooking oil biodiesel blends. International Journal of Engine Research 146808742211332. doi:10.1177/14680874221133223.
  • Lamas, M. I., C. G. R, J. D. R. J T, and R. JD. 2015. Numerical Analysis of Emissions from Marine Engines Using Alternative Fuels. Polish Maritime Research 22 (4):48–52. doi:10.1515/pomr-2015-0070.
  • Leach, F. C. P., M. Davy, and B. Terry. 2021. Combustion and emissions from cerium oxide nanoparticle dosed diesel fuel in a high speed diesel research engine under low temperature combustion (LTC) conditions. Fuel 288:119636. doi:10.1016/j.fuel.2020.119636.
  • Li, F., Z. Liu, Z. Ni, and H. Wang. 2019. Effect of biodiesel components on its lubrication performance. Journal of Materials Research and Technology 8 (5):3681–87. doi:10.1016/j.jmrt.2019.06.011.
  • Liu, Y., S. A. Majetich, R. D. Tilton, D. S. Sholl, and G. V. Lowry. 2005. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science and Technology 39 (5):1338–45. doi:10.1021/es049195r.
  • Lok, C. N., C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K.-H. Tam, J.-F. Chiu, and C.-M. Che. 2007. Silver nanoparticles: Partial oxidation and antibacterial activities. Journal of Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry 12 (4):527–34. doi:10.1007/s00775-007-0208-z.
  • Lowry, G. V., K. B. Gregory, S. C. Apte, and J. R. Lead. 2012. Transformations of nanomaterials in the environment. Environmental Science and Technology 46 (13):6893–99. doi:10.1021/es300839e.
  • Luo, P., T. G. Nieh, A. J. Schwartz, and T. J. Lenk. 1995. Surface characterization of nanostructured metal and ceramic particles. Materials Science and Engineering 204 (1–2):59–64. doi:10.1016/0921-5093(95)09938-7.
  • Ma, Y., L. Kuang, X. He, W. Bai, Y. Ding, Z. Zhang, Y. Zhao, and Z. Chai. 2010. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78 (3):273–79. doi:10.1016/j.chemosphere.2009.10.050.
  • Ma, R., C. Levard, S. M. Marinakos, Y. Cheng, J. Liu, F. M. Michel, G. E. Brown, and G. V. Lowry. 2012. Size-controlled dissolution of organic-coated silver nanoparticles. Environmental Science and Technology 46 (2):752–59. doi:10.1021/es201686j.
  • Mandal, S., and S. Kanagaraj. 2012. Reduction of emission in a diesel engine using nanofuel–ceria nanoparticle dispersed diesel. Journal of ASTM International 9 (5):104424–29. doi:10.1520/JAI104424.
  • Marie, T., A. Mélanie, B. Lenka, I. Julien, K. Isabelle, P. Christine, M. Elise, S. Catherine, A. Bernard, A. Ester, et al. 2014. Transfer, transformation, and impacts of ceria nanomaterials in aquatic mesocosms simulating a pond ecosystem. Environmental Science and Technology. 48(16):9004–13. doi:10.1021/es501641b.
  • Ma, R., J. Stegemeier, C. Levard, J. G. Dale, C. W. Noack, T. Yang, G. E. Brown, and G. V. Lowry. 2014. Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide. Environmental Science Nano 1 (4):347–57. doi:10.1039/c4en00018h.
  • Ma, J. Y., H. Zhao, R. R. Mercer, M. Barger, M. Rao, T. Meighan, D. Schwegler-Berry, V. Castranova, and J. K. Ma. 2011. Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicology 5 (3):312–25. doi:10.3109/17435390.2010.519835.
  • Mei, D., X. Li, Q. Wu, and P. Sun. 2016. Role of Cerium Oxide Nanoparticles as Diesel Additives in Combustion Efficiency Improvements and Emission Reduction. Journal of Energy Engineering 142 (4). doi:10.1061/(asce)ey.1943-7897.0000329.
  • Miller, M. R., J. B. Raftis, J. P. Langrish, S. G. McLean, P. Samutrtai, S. P. Connell, S. Wilson, A. T. Vesey, P. H. B. Fokkens, A. J. F. Boere, et al. 2017. Correction to“Inhaled Nanoparticles Accumulate at Sites of Vascular Disease”. Agricultural Science & Technology Nano. 11(10):10623–24. doi:10.1021/acsnano.7b06327.
  • Mosarof, M. H., M. A. Kalam, H. H. Masjuki, A. M. Ashraful, M. M. Rashed, H. K. Imdadul, and I. M. Monirul. 2015. Implementation of palm biodiesel based on economic aspects, performance, emission, and wear characteristics. Energy Conversion & Management 105:617–29. doi:10.1016/j.enconman.2015.08.020.
  • Murugesan, P., E. Perumal Venkatesan, D. Balasubramanian, D. Santosh Kumar, D. Balasubramanian, A. T. Le, and V. V. Pham. 2022. Role of hydrogen in improving performance and emission characteristics of homogeneous charge compression ignition engine fueled with graphite oxide nanoparticle-added microalgae biodiesel/diesel blends. International Journal of Hydrogen Energy 47 (88):37617–34. doi:10.1016/j.ijhydene.2021.08.107.
  • Nachippan, N. M., M. Parthasarathy, P. V. Elumalai, A. Backiyaraj, D. Balasubramanian, and A. T. Hoang. 2022. Experimental assessment on characteristics of premixed charge compression ignition engine fueled with multi-walled carbon nanotube-included Tamanu methyl ester. Fuel 323:124415. doi:10.1016/j.fuel.2022.124415.
  • Nagarajan, J., D. Balasubramanian, E. Khalife, and K. M. Usman. 2022. Optimization of compression ignition engine fuelled with Cotton seed biodiesel using Diglyme and injection pressure. JOURNAL of TECHNOLOGY & INNOVATION 2 (2):52–61. doi:10.26480/jtin.02.2022.52.61.
  • Naik, J. V., and K. K. Kumar. 2018. Performance and emission characteristics of diesel engines with Al2O3 and CuO nanoparticles as additives. International Journal of Engineering and Technology 9:791–98.
  • Nanthagopal, K., B. Ashok, A. Tamilarasu, A. Johny, and A. Mohan. 2017. Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine. Energy Conversion and Management 146:8–19. doi:10.1016/j.enconman.2017.05.021.
  • Nanthagopal, K., R. S. Kishna, A. E. Atabani, H. Ala’a, G. Kumar, and B. Ashok. 2020. A compressive review on the effects of alcohols and nanoparticles as an oxygenated enhancer in compression ignition engine. Energy Conversion and Management 203:112244. doi:10.1016/j.enconman.2019.112244.
  • Nemmar, A., S. Al-Salam, S. Beegam, P. Yuvaraju, and B. H. Ali. 2017. The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice. International Journal of Nanomedicine Volume 12:2913–22. doi:10.2147/IJN.S127180.
  • Nemmar, A., S. Al-Salam, S. Zia, J. Yasin, I. Al Husseni, and B. H. Ali. 2010. Diesel exhaust particles in the lung aggravate experimental acute renal failure. Toxicological Sciences: An Official Journal of the Society of Toxicology 113 (1):267–77. doi:10.1093/toxsci/kfp222.
  • Nemmar, A., P. H. M. Hoet, B. Vanquickenborne, D. Dinsdale, M. Thomeer, M. F. Hoylaerts, H. Vanbilloen, L. Mortelmans, and B. Nemery. 2002. Passage of inhaled particles into the blood circulation in humans. Circulation 105 (4):411–14. doi:10.1161/hc0402.104118.
  • Nemmar, A., J. A. Holme, I. Rosas, P. E. Schwarze, and E. Alfaro-Moreno. 2013. Recent advances in particulate matter and nanoparticle toxicology: A review of the in vivo and in vitro studies. BioMed Research International 2013:1–22. doi:10.1155/2013/279371.
  • Nemmar, A., T. Karaca, S. Beegam, P. Yuvaraju, J. Yasin, and B. H. Ali. 2017. Lung oxidative stress, DNA damage, apoptosis, and fibrosis in adenine-induced chronic kidney disease in mice. Frontiers in Physiology 8. doi:10.3389/fphys.2017.00896.
  • Nemmar, A., P. Yuvaraju, S. Beegam, M. A. Fahim, and B. H. Ali. 2017. Cerium Oxide Nanoparticles in Lung Acutely Induce Oxidative Stress, Inflammation, and DNA Damage in Various Organs of Mice. Oxidative Medicine and Cellular Longevity 2017:1–12. doi:10.1155/2017/9639035.
  • Nguyen-Thi, T. X., and T. M. T. Bui. 2023. Effects of Injection Strategies on Mixture Formation and Combustion in a Spark-Ignition Engine Fueled with Syngas-Biogas-Hydrogen. International Journal of Renewable Energy Development 12:118–28. doi:10.14710/ijred.2023.49368.
  • Nguyen, X. P., and H. N. Vu. 2019. Corrosion of the metal parts of diesel engines in biodiesel-based fuels. International Journal of Renewable Energy Development 8 (2):119–32. doi:10.14710/ijred.8.2.119-132.
  • Niu, J., K. Wang, and P. E. Kolattukudy. 2011. Cerium oxide nanoparticles inhibits oxidative stress and nuclear Factor-κB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. The Journal of Pharmacology and Experimental Therapeutics 338 (1):53–61. doi:10.1124/jpet.111.179978.
  • Oberdörster, G. 2010. Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology. Journal of Internal Medicine 267 (1):89–105. doi:10.1111/j.1365-2796.2009.02187.x.
  • Oberdörster, G., A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, et al. 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle and Fibre Toxicology 2 (1). doi: 10.1186/1743-8977-2-8.
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives 113 (7):823–39. doi:10.1289/ehp.7339.
  • Onokwai, A. O., I. P. Okokpujie, E. S. Ajisegiri, M. Oki, A. O. Adeoyeb, and E. T. Akinlabi. 2022. Characterization of Lignocellulosic Biomass Samples in Omu-Aran Metropolis, Kwara State, Nigeria, as Potential Fuel for Pyrolysis Yields. International Journal of Renewable Energy Development 11 (4):973–81. doi:10.14710/ijred.2022.45549.
  • Ooi, J. B., H. M. Ismail, B. T. Tan, and X. Wang. 2018. Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine. Energy 161:70–80. doi:10.1016/j.energy.2018.07.062.
  • Padgurskas, J., R. Rukuiza, I. Prosyčevas, and R. Kreivaitis. 2013. Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribology International 60:224–32. doi:10.1016/j.triboint.2012.10.024.
  • Pan, S., J. Wei, C. Tao, G. Lv, Y. Qian, Q. Liu, and W. Han. 2021. Discussion on the combustion, performance and emissions of a dual fuel diesel engine fuelled with methanol-based CeO2 nanofluids. Fuel 302:121096. doi:10.1016/j.fuel.2021.121096.
  • Patil, D. S. 2018. Experimental investigation of effect of cerium oxide nanoparticles as a fuel additive in cottonseed biodiesel blends. MAYFEB J Mech Eng 1:1–12.
  • Péry, A. R. R., C. Brochot, P. H. M. Hoet, A. Nemmar, and F. Y. Bois. 2009. Development of a physiologically based kinetic model for 99 m -Technetium-labelled carbon nanoparticles inhaled by humans. Inhalation Toxicology 21 (13):1099–107. doi:10.3109/08958370902748542.
  • P, M. P, P. P, R. Sathyamurthy. 2021. Analysis on performance and emission characteristics of corn oil methyl ester blended with diesel and cerium oxide nanoparticle. Case Studies in Thermal Engineering 26:101077. doi:10.1016/j.csite.2021.101077.
  • Prabu, A., and R. B. Anand. 2016. Emission control strategy by adding alumina and cerium oxide nano particle in biodiesel. Journal of the Energy Institute 89 (3):366–72. doi:10.1016/j.joei.2015.03.003.
  • Qin, L., J. Han, W. Chen, X. Yao, S. Tadaaki, and H. Kim. 2016. Enhanced combustion efficiency and reduced pollutant emission in a fluidized bed combustor by using porous alumina bed materials. Applied Thermal Engineering 94:813–18. doi:10.1016/j.applthermaleng.2015.10.153.
  • Radhakrishnan, S., D. B. Munuswamy, Y. Devarajan, T. Arunkumar, and A. Mahalingam. 2018. Effect of nanoparticle on emission and performance characteristics of a diesel engine fueled with cashew nut shell biodiesel. Energy Sources, Part A Recover Util Environ Eff 40 (20):2485–93. doi:10.1080/15567036.2018.1502848.
  • Radomska, A., J. Leszczyszyn, and M. W. Radomski. 2016. The nanopharmacology and nanotoxicology of nanomaterials: New opportunities and challenges. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University 25 (1):151–62. doi:10.17219/acem/60879.
  • Rajak, U., P. Nashine, P. K. Chaurasiya, T. N. Verma, A. Dasore, K. K. Pathak, G. Dwivedi, A. K. Shukla, and G. Saini. 2022. The effects on performance and emission characteristics of DI engine fuelled with CeO2 nanoparticles addition in diesel/tyre pyrolysis oil blends. Environment, Development and Sustainability. doi:10.1007/s10668-022-02358-8.
  • Ramarao, K., C. J. Rao, and D. Sreeramulu. 2015. The experimental investigation on performance and emission characteristics of a single cylinder diesel engine using nano additives in diesel and biodiesel. Indian Journal of Science & Technology 8 (29):1. doi:10.17485/ijst/2015/v8i29/75718.
  • Saber, A. T., J. Bornholdt, M. Dybdahl, A. K. Sharma, S. Loft, U. Vogel, and H. Wallin. 2005. Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation. Archives of Toxicology 79 (3):177–82. doi:10.1007/s00204-004-0613-9.
  • Sadhik Basha, J. 2018. Impact of Carbon Nanotubes and Di-Ethyl Ether as additives with biodiesel emulsion fuels in a diesel engine – an experimental investigation. Journal of the Energy Institute 91 (2):289–303. doi:10.1016/j.joei.2016.11.006.
  • Sajeevan, A. C., and V. Sajith. 2013. Diesel engine emission reduction using catalytic nanoparticles: An experimental investigation. Journal of Engineering 2013:1–9. doi:10.1155/2013/589382.
  • Sajeevan, A. C., and V. Sajith. 2016. Synthesis of stable cerium zirconium oxide nanoparticle – Diesel suspension and investigation of its effects on diesel properties and smoke. Fuel 183:155–63. doi:10.1016/j.fuel.2016.06.048.
  • Sajith, V., C. B. Sobhan, and G. P. Peterson. 2010. Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Advances in Mechanical Engineering 2:581407. doi:10.1155/2010/581407.
  • Saraee, H. S., H. Taghavifar, and S. Jafarmadar. 2017. Experimental and numerical consideration of the effect of CeO2 nanoparticles on diesel engine performance and exhaust emission with the aid of artificial neural network. Applied Thermal Engineering 113:663–72. doi:10.1016/j.applthermaleng.2016.11.044.
  • Sathish, T., Ü. Ağbulut, S. M. George, K. Ramesh, R. Saravanan, K. L. Roberts, P. Sharma, M. Asif, and A. T. Hoang. 2023. Waste to fuel: Synergetic effect of hybrid nanoparticle usage for the improvement of CI engine characteristics fuelled with waste fish oils. Energy 275:127397. doi:10.1016/j.energy.2023.127397.
  • Sathya, A. B., A. Thirunavukkarasu, R. Nithya, A. Nandan, K. Sakthishobana, A. K. Kola, Sivashankar, R., Tuan, H.A., and Deepanraj, B . 2023. Microalgal biofuel production: Potential challenges and prospective research. Fuel 332:126199. doi:10.1016/j.fuel.2022.126199.
  • Seela, C. R., B. Ravi Sankar, D. Kishore, and M. V. S. Babu. 2019. Experimental analysis on a DI diesel engine with cerium-oxide-added Mahua methyl ester blends. International Journal of Ambient Energy 40 (1):49–53. doi:10.1080/01430750.2017.1360203.
  • Selvan, V. A. M., R. B. Anand, and M. Udayakumar. 2009. Effects of cerium oxide nanoparticle addition in diesel and diesel-biodiesel-ethanol blends on the performance and emission characteristics of a CI engine. Journal of Engineering Applied Sciences 4:1–6.
  • Selvan, V. A. M., R. B. Anand, and M. Udayakumar. 2014. Effect of Cerium Oxide Nanoparticles and Carbon Nanotubes as fuel-borne additives in Diesterol blends on the performance, combustion and emission characteristics of a variable compression ratio engine. Fuel 130:160–67. doi:10.1016/j.fuel.2014.04.034.
  • Senthil Kumar, J., S. Ganesan, and K. S. S. Raja. 2019. Experimental analysis of the effects of cerium oxide nanoparticles on a single-cylinder diesel engine using biofuel blended with diesel as fuel. International Journal of Ambient Energy 40 (5):490–93. doi:10.1080/01430750.2017.1410230.
  • Serbin, S., B. Diasamidze, V. Gorbov, and J. Kowalski. 2021. Investigations of the Emission Characteristics of a Dual-Fuel Gas Turbine Combustion Chamber Operating Simultaneously on Liquid and Gaseous Fuels. Polish Maritime Research 28 (2):85–95. doi:10.2478/pomr-2021-0025.
  • Setiabudi, A., J. Chen, G. Mul, M. Makkee, and J. A. Moulijn. 2004. CeO2 catalysed soot oxidation: The role of active oxygen to accelerate the oxidation conversion. Applied Catalysis B, Environmental 51 (1):9–19. doi:10.1016/j.apcatb.2004.01.005.
  • Sharma, S. K., R. K. Das, and A. Sharma. 2016. Improvement in the performance and emission characteristics of diesel engine fueled with jatropha methyl ester and tyre pyrolysis oil by addition of nano additives. Journal of the Brazilian Society of Mechanical Sciences and Engineering 38 (7):1907–20. doi:10.1007/s40430-015-0454-x.
  • Sharma, P., M. P. Le, A. Chhillar, Z. Said, B. Deepanraj, D. N. Cao, S. A. Bandh, and A. T. Hoang. 2022. Using response surface methodology approach for optimizing performance and emission parameters of diesel engine powered with ternary blend of Solketal-biodiesel-diesel. Sustain Energy Technol Assessments 52:102343. doi:10.1016/j.seta.2022.102343.
  • Simhadri, K., P. S. Rao, and M. K. Paswan. 2023. Effect of changing injection pressure on Mahua oil and biodiesel combustion with CeO2 nanoparticle blend on CI engine performance and emission characteristics. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2023.03.267.
  • Singh, P., S. R. Chauhan, and V. Goel. 2018. Assessment of diesel engine combustion, performance and emission characteristics fuelled with dual fuel blends. Renew Energy 125:501–10. doi:10.1016/j.renene.2018.02.105.
  • Singh Pali, H., A. Sharma, M. Kumar, V. Anand Annakodi, V. Nhanh Nguyen, N. Kumar Singh, Y. Singh, D. Balasubramanian, B. Deepanraj, T. Hai Truong, et al. 2023. Enhancement of combustion characteristics of waste cooking oil biodiesel using TiO2 nanofluid blends through RSM. Fuel 331:125681. doi:10.1016/j.fuel.2022.125681.
  • Snow, S. J., J. McGee, D. B. Miller, V. Bass, M. C. Schladweiler, R. F. Thomas, T. Krantz, C. King, A. D. Ledbetter, J. Richards, et al. 2014. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects. Toxicological Sciences: An Official Journal of the Society of Toxicology. 142(2):403–17. doi:10.1093/toxsci/kfu187.
  • Squaiella, L. L. F., C. A. Martins, and P. T. Lacava. 2013. Strategies for emission control in diesel engine to meet Euro VI. Fuel 104:183–93. doi:10.1016/j.fuel.2012.07.027.
  • Srinivasa Rao, M., and R. B. Anand. 2016. Performance and emission characteristics improvement studies on a biodiesel fuelled DICI engine using water and AlO(OH) nanoparticles. Applied Thermal Engineering 98:636–45. doi:10.1016/j.applthermaleng.2015.12.090.
  • Srivastava, N., R. Singh, M. Srivastava, A. Mohammad, S. Harakeh, S. R. Pratap, D. B. Pal, S. Haque, H. H. Tayeb, M. Moulay, et al. 2023. Impact of nanomaterials on sustainable pretreatment of lignocellulosic biomass for biofuels production: An advanced approach. Bioresource Technology 369:128471. doi:10.1016/j.biortech.2022.128471.
  • Stagecoach Group. 2013. Stagecoach cuts carbon emissions through innovative fuel saving additive.
  • Stelmasiak, Z., J. Larisch, J. Pielecha, and D. Pietras. 2017. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas. Polish Maritime Research 24 (2):96–104. doi:10.1515/pomr-2017-0055.
  • Subramani, K., and M. Karuppusamy. 2021. Performance, combustion and emission characteristics of variable compression ratio engine using waste cooking oil biodiesel with added nanoparticles and diesel blends. Environmental Science and Pollution Research 28 (45):63706–22. doi:10.1007/s11356-021-14768-8.
  • Sujesh, G., S. Ganesan, and S. Ramesh. 2020. Effect of CeO2 nano powder as additive in WME-TPO blend to control toxic emissions from a light-duty diesel engine – an experimental study. Fuel 278:118177. doi:10.1016/j.fuel.2020.118177.
  • Tarełko, W. 2015. The effect of hull biofouling on parameters characterising ship propulsion system efficiency. Polish Maritime Research 21 (4):27–34X. doi:10.2478/pomr-2014-0038.
  • Tella, M., M. Auffan, L. Brousset, E. Morel, O. Proux, C. Chanéac, B. Angeletti, C. Pailles, E. Artells, C. Santaella, et al. 2015. Chronic dosing of a simulated pond ecosystem in indoor aquatic mesocosms: Fate and transport of CeO2 nanoparticles. Environmental Science: Nano. 2(6):653–63. doi:10.1039/c5en00092k.
  • Tiwari, A. J., J. R. Morris, E. P. Vejerano, M. F. Hochella, and L. C. Marr. 2014. Oxidation of C60 aerosols by atmospherically relevant levels of O3. Environmental Science and Technology 48 (5):2706–14. doi:10.1021/es4045693.
  • Trovarelli, A. 1996. Catalytic properties of ceria and CeO2-Containing materials. Catalysis Reviews 38 (4):439–520. doi:10.1080/01614949608006464.
  • Uslu, S., and M. Celik. 2023. Response surface methodology-based optimization of the amount of cerium dioxide (CeO2) to increase the performance and reduce emissions of a diesel engine fueled by cerium dioxide/diesel blends. Energy 266:126403. doi:10.1016/j.energy.2022.126403.
  • Vairamuthu, G., S. Sundarapandian, C. Kailasanathan, and B. Thangagiri. 2016. Experimental investigation on the effects of cerium oxide nanoparticle on Calophyllum inophyllum (Punnai) biodiesel blended with diesel fuel in DI diesel engine modified by nozzle geometry. Journal of the Energy Institute 89 (4):668–82. doi:10.1016/j.joei.2015.05.005.
  • Valentino, S. A., A. Tarrade, J. Aioun, E. Mourier, C. Richard, M. Dahirel, D. Rousseau-Ralliard, N. Fournier, M.-C. Aubrière, M.-S. Lallemand, et al. 2015. Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits. Particle and Fibre Toxicology 13 (1). doi: 10.1186/s12989-016-0151-7.
  • Vallinayagam, R., S. Vedharaj, W. M. Yang, V. Raghavan, C. G. Saravanan, P. S. Lee, K. J. E. Chua, and S. K. Chou. 2014. Investigation of evaporation and engine characteristics of pine oil biofuel fumigated in the inlet manifold of a diesel engine. Applied Energy 115:514–24. doi:10.1016/j.apenergy.2013.11.004.
  • Vallinayagam, R., S. Vedharaj, W. M. Yang, W. L. Roberts, and R. W. Dibble. 2015. Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review. Renewable and Sustainable Energy Reviews 51:1166–90. doi:10.1016/j.rser.2015.07.042.
  • Vellaiyan, S. 2020. Effect of cerium oxide nanoadditive on the working characteristics of water emulsified biodiesel fueled diesel engine: An experimental study. Thermal Science 24 (1 Part A):231–41. doi:10.2298/tsci190112305v.
  • Vellaiyan, S., and K. S. Amirthagadeswaran. 2016. The role of water-in-diesel emulsion and its additives on diesel engine performance and emission levels: A retrospective review. Alexandria Eng J 55 (3):2463–72. doi:10.1016/j.aej.2016.07.021.
  • Venkata Subbaiah, G., and K. Raja Gopal. 2011. An experimental investigation on the performance and emission characteristics of a diesel engine fuelled with rice bran biodiesel and ethanol blends. International Journal of Green Energy 8 (2):197–208. doi:10.1080/15435075.2010.548539.
  • Venkatesan, E. P., A. Kandhasamy, A. Sivalingam, A. S. Kumar, K. Ramalingam, P. James Thadhani Joshua, and D. Balasubramanian. 2019. Performance and emission reduction characteristics of cerium oxide nanoparticle-water emulsion biofuel in diesel engine with modified coated piston. Environmental Science and Pollution Research 26 (26):27362–71. doi:10.1007/s11356-019-05773-z.
  • Venna, S., H. B. Sharma, P. H. P. Reddy, S. Chowdhury, and B. K. Dubey. 2021. Landfill leachate as an alternative moisture source for hydrothermal carbonization of municipal solid wastes to solid biofuels. Bioresource Technology 320:124410. doi:10.1016/j.biortech.2020.124410.
  • Venu, H., V. D. Raju, S. Lingesan, M. Elahi, and M. Soudagar. 2021. Influence of Al2O3nano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in a single cylinder diesel engine: Performance, combustion and emission characteristics. Energy 215:119091. doi:10.1016/j.energy.2020.119091.
  • Venu, H., V. D. Raju, and L. Subramani. 2019. Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends. Energy 174:386–406. doi:10.1016/j.energy.2019.02.163.
  • Veza, I., Irianto, A. A. Tuan Hoang, A. A. Yusuf, S. G. Herawan, M. E. M. Soudagar, O. D. Samuel, M. F. M. Said, and A. S. Silitonga. 2023. Effects of Acetone-Butanol-Ethanol (ABE) addition on HCCI-DI engine performance, combustion and emission. Fuel 333:126377. doi:10.1016/j.fuel.2022.126377.
  • Wakefield, G., X. Wu, M. Gardener, B. Park, and S. Anderson. 2008. Envirox™ fuel-borne catalyst: Developing and launching a nano-fuel additive. Technol Anal Strateg Manag 20 (1):127–36. doi:10.1080/09537320701726825.
  • Wambui, T., M. Hawi, F. Njoka, and J. Kamau. 2023. Performance enhancement and emissions reduction in a diesel engine using oleander and croton biodiesel doped with graphene nanoparticles. International Journal of Renewable Energy Development 12 (3):635–47. doi:10.14710/ijred.2023.51785.
  • Wang, L., S. Deo, K. Dooley, M. J. Janik, and R. M. Rioux. 2020. Influence of metal nuclearity and physicochemical properties of ceria on the oxidation of carbon monoxide. Chinese Journal of Catalysis 41 (6):951–62. doi:10.1016/S1872-2067(20)63557-4.
  • Wang, Q., K. L. Yeung, and M. A. Bañares. 2020. Ceria and its related materials for VOC catalytic combustion: A review. Catalysis Today 356:141–54. doi:10.1016/j.cattod.2019.05.016.
  • Wei, J., C. He, C. Fan, S. Pan, M. Wei, and C. Wang. 2021. Comparison in the effects of alumina, ceria and silica nanoparticle additives on the combustion and emission characteristics of a modern methanol-diesel dual-fuel CI engine. Energy Conversion and Management 238:114121. doi:10.1016/j.enconman.2021.114121.
  • Wei, J., Z. Yin, C. Wang, G. Lv, Y. Zhuang, X. Li, and Wu, H . 2021b. Impact of aluminium oxide nanoparticles as an additive in diesel-methanol blends on a modern DI diesel engine. Applied Thermal Engineering 185:116372. doi:10.1016/j.applthermaleng.2020.116372.
  • Williams, D. 2006. Toxicophores: Investigations in drug safety. Toxicology 226 (1):1–11. doi:10.1016/j.tox.2006.05.101.
  • Wingard, C. J., D. M. Walters, B. L. Cathey, S. C. Hilderbrand, P. Katwa, S. Lin, P. C. Ke, R. Podila, A. Rao, R. M. Lust, et al. 2011. Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation. Nanotoxicology. 5(4):531–45. doi:10.3109/17435390.2010.530004.
  • Xu, X., S. Nie, H. Ding, and F. F. Hou. 2018. Environmental pollution and kidney diseases. Nature Reviews Nephrology 14 (5):313–24. doi:10.1038/nrneph.2018.11.
  • Yalama, V., O. Yakovleva, V. Trandafilov, and M. Khmelniuk. 2022. Future sustainable maritime sector: fishing carriers and their adoption to the environmental regulations. part I. Polish Maritime Research 29 (3):69–77. doi:10.2478/pomr-2022-0027.
  • Yang, Z., Q. Tan, and P. Geng. 2019. Combustion and emissions investigation on low-speed two-stroke marine diesel engine with low sulfur diesel fuel. Polish Maritime Research 26 (1):153–61. doi:10.2478/pomr-2019-0017.
  • Yaşar, A., A. Keskin, Ş. Yıldızhan, E. Uludamar, and K. Ocakoğlu. 2018. Effects of titanium-based additive with blends of butanol and diesel fuel on engine characteristics. International Journal of Global Warming 15 (1):38. doi:10.1504/IJGW.2018.091950.
  • Yin, B., X. Kuang, B. Xu, H. Jia, and X. Hua. 2020a. Experimental study on the tribological behaviour of CeO 2 ‐diesel blends on the injector body. Lubr Science 32 (6):283–91. doi:10.1002/ls.1502.
  • Yin, B., X. Kuang, B. Xu, H. Jia, and X. Hua. 2020b. Experimental study on the tribological behaviour of CeO2-diesel blends on the injector body. Lubrication Science 32 (6):283–91. doi:10.1002/ls.1502.
  • Younis, A., D. Chu, and S. Li. 2016. Cerium Oxide Nanostructures and their Applications. Funct Nanomater, InTech 53–68. doi:10.5772/65937.
  • Yusuf, A. A., H. Dandakouta, I. Yahuza, D. A. Yusuf, M. A. Mujtaba, A. S. El-Shafay, and M. E. M. Soudagar. 2022. Effect of low CeO2 nanoparticles dosage in biodiesel-blends on combustion parameters and toxic pollutants from common-rail diesel engine. Atmospheric Pollution Research 13 (2):101305. doi:10.1016/j.apr.2021.101305.
  • Yuvarajan, D., M. Dinesh Babu, N. BeemKumar, and P. Amith Kishore. 2018. Experimental investigation on the influence of titanium dioxide nanofluid on emission pattern of biodiesel in a diesel engine. Atmospheric Pollution Research 9 (1):47–52. doi:10.1016/j.apr.2017.06.003.
  • Zhang, Z.-H., and R. Balasubramanian. 2017. Effects of cerium oxide and ferrocene nanoparticles addition as fuel-borne catalysts on diesel engine particulate emissions: Environmental and health implications. Environmental Science and Technology 51 (8):4248–58. doi:10.1021/acs.est.7b00920.
  • Zhang, Z., Y. Lu, Y. Wang, X. Yu, A. Smallbone, C. Dong, and A. P. Roskilly. 2019. Comparative study of using multi-wall carbon nanotube and two different sizes of cerium oxide nanopowders as fuel additives under various diesel engine conditions. Fuel 256:115904. doi:10.1016/j.fuel.2019.115904.
  • Zhang, J., Y. Nazarenko, L. Zhang, L. Calderon, K.-B. Lee, E. Garfunkel, S. Schwander, T. D. Tetley, K. F. Chung, A. E. Porter, et al. 2013. Impacts of a nanosized ceria additive on diesel engine emissions of particulate and gaseous pollutants. Environmental Science and Technology. 47(22):13077–85. doi:10.1021/es402140u.
  • Zhao, Y., Z. Wen, Y. Huang, X. Duan, Y. Cao, L. Ye, L. Jiang, and Y. Yuan. 2018. Low-temperature soot combustion over ceria modified MgAl2O4-supported Ag nanoparticles. Catalysis Communications 111:26–30. doi:10.1016/j.catcom.2018.03.029.
  • Zhao, R., L. Xu, X. Su, S. Feng, C. Li, Q. Tan, and Z. Wang. 2020. A numerical and experimental study of marine hydrogen–natural gas–diesel tri–fuel engines. Polish Maritime Research 27 (4):80–90. doi:10.2478/pomr-2020-0068.
  • Zhu, M., Y. Ma, and D. Zhang. 2012. Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine. Applied Energy 91 (1):166–72. doi:10.1016/j.apenergy.2011.09.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.