155
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation of indirect contact phase-change cooling system with R1234yf/R152a mixed refrigerant for battery thermal management

, , &
Pages 9093-9117 | Received 27 Feb 2023, Accepted 27 Jun 2023, Published online: 09 Jul 2023

References

  • Aldosry, A. M., R. Zulkifli, and W. A. W. Ghopa. 2021. Heat transfer enhancement of liquid cooled copper plate with oblique fins for electric vehicles battery thermal management. World Electric Vehicle Journal 12 (2):55. doi:10.3390/wevj12020055.
  • Alkan, A., A. Kolip, and M. Hosoz. 2021. Energetic and exergetic performance comparison of an experimental automotive air conditioning system using refrigerants R1234yf and R134a. Journal of Thermal Engineering 7 (5):1163–73. doi:10.18186/thermal.978014.
  • Al-Zareer, M., I. Dincer, and M. A. Rosen. 2020. A thermal performance management system for lithium-ion battery packs. Applied Thermal Engineering 165:114378. doi:10.1016/j.applthermaleng.2019.114378.
  • Bolaji, B. O., and Z. Huan. 2014. Performance investigation of some hydro-fluorocarbon refrigerants with low global warming as substitutes to R134a in refrigeration systems. Journal of Engineering Thermophysics 23 (2):148–57. doi:10.1134/S1810232814020076.
  • Cen, J., Z. Li, and F. Jiang. 2018. Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management. Energy for Sustainable Development 45:88–95. doi:10.1016/j.esd.2018.05.005.
  • Chen, J., S. Kang, E. J, Z. Huang, K. Wei, B. Zhang, H. Zhu, Y. Deng, F. Zhang, and G. Liao. 2019. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review. Journal of Power Sources 442:227228. doi:10.1016/j.jpowsour.2019.227228.
  • Daviran, S., A. Kasaeian, S. Golzari, O. Mahian, S. Nasirivatan, and S. Wongwises. 2016. A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems. Applied Thermal Engineering 110:1091–100. doi:10.1016/j.applthermaleng.2016.09.034.
  • Deng, J., X. X. Li, G. Q. Zhang, Z. X. Wu, C. B. Li, Q. Q. Huang, and C. Yang. 2021. Flexible composite phase-change material with shape recovery and antileakage properties for battery thermal management. ACS Applied Energy Materials 4 (12):13890–902. doi:10.1021/acsaem.1c02694.
  • E, J. Q., M., Yue, J. W., Chen, H., Zhu, Y. W., Deng, and Y., Zhu. 2018. Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle. Applied Thermal Engineering 144:231–41. doi:10.1016/j.applthermaleng.2018.08.064.
  • Feng, B., and Z. Yang. 2021. Research on burning velocity of R152a and its binary mixture. Combustion and Flame 228:184–92. doi:10.1016/j.combustflame.2021.01.042.
  • Feng, L., S. Zhou, Y. Li, Y. Wang, Q. Zhao, and C. Luo. 2018. Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling. Journal of Energy Storage 16:84–92. doi:10.1016/j.est.2018.01.001.
  • Fluent Inc. 2017. Fluent user’s guide. Fluent Inc.
  • Forgez, C., D. Vinh Do, G. Friedrich, M. Morcrette, and C. Delacourt. 2010. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. Journal of Power Sources 195 (9):2961–68. doi:10.1016/j.jpowsour.2009.10.105.
  • Hong, S. H., D. S. Jang, S. Park, S. Yun, and Y. Kim. 2020. Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles. Applied Thermal Engineering 173:115213. doi:10.1016/j.applthermaleng.2020.115213.
  • Hu, P., L. X. Chen, W. B. Zhu, L. Jia, and Z. S. Chen. 2014. Isothermal VLE measurements for the binary mixture of 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf)+1,1-difluoroethane (HFC-152a). Fluid Phase Equilibria (373):80–83. doi:10.1016/j.fluid.2014.04.015.
  • Kim, J., P. Y. Lee, C. O. Youn, S. Lee, and J. H. Park. 2017. Experiments and characteristic analysis of a large-capacity prismatic cell for electric-powered application. International Conference on Control, Automation and Systems 10:1148–51. doi: 10.23919/ICCAS.2017.8204387.
  • Kuczyński, W., M. Kruzel, and K. Chliszcz. 2022. A regressive model for periodic dynamic instabilities during condensation of R1234yf and R1234ze refrigerants. Energies 15 (6):2117. doi:10.3390/en15062117.
  • Lee, H., C. R. Kharangate, N. Mascarenhas, I. Park, and I. Mudawar. 2015. Experimental and computational investigation of vertical downflow condensation. International Journal of Heat and Mass Transfer 85:865–79. doi:10.1016/j.ijheatmasstransfer.2015.02.037.
  • Ma, J., Y. F. Sun, S. A. Zhang, J. Li, and S. G. Li. 2022. Experimental study on the performance of vehicle integrated thermal management system for pure electric vehicles. Energy Conversion and Management 253:115183. doi:10.1016/j.enconman.2021.115183.
  • Motta, S. F. Y., M. W. Spatz, and R. Hulse. 2014. Low GWP heat transfer compositions. US2014/0191153 A1.
  • Park, S., D. S. Jang, D. Lee, S. H. Hong, and Y. Kim. 2019. Simulation on cooling performance characteristics of a refrigerant-cooled active thermal management system for lithium ion batteries. International Journal of Heat and Mass Transfer 135:134–41. doi:10.1016/j.ijheatmasstransfer.2019.01.109.
  • Patel, T., and A. D. Parekh. 2021. Condensation of refrigerant in a horizontal circular mini-channel using HFO refrigerant: A numerical study. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering 46 (2):359–77. doi:10.1007/s40997-021-00428-2.
  • Qin, J. X., S. P. Zhao, X. Liu, and Y. T. Liu. 2020. Simulation study on thermal runaway suppression of 18650 lithium battery. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects. doi:10.1080/15567036.2020.1817189.
  • Qiu, G., M. Li, and W. Cai. 2020. The effect of inclined angle on flow, heat transfer and refrigerant charge of R290 condensation in a minichannel. International Journal of Heat and Mass Transfer 154:119652. doi:10.1016/j.ijheatmasstransfer.2020.119652.
  • Qiu, W. C., G. Li, C. Z. Ouyang, and J. H. Zeng. 2021. Simulation and experimental investigation of battery thermal management system for a hybrid vehicle. IOP Conference Series: Earth and Environmental Science 631:012093. doi: 10.1088/1755-1315/631/1/012093.
  • Rao, Z. H., S. F. Wang, and Y. L. Zhang. 2014. Thermal management with phase change material for a power battery under cold temperatures. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 36 (20):2287–95. doi:10.1080/15567036.2011.576411.
  • Schepper, S., G. J. Heynderickx, and G. B. Marin. 2009. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker. Computers & Chemical Engineering 33 (1):122–32. doi:10.1016/j.compchemeng.2008.07.013.
  • Shen, M., and Q. Gao. 2020a. Structure design and effect analysis on refrigerant cooling enhancement of battery thermal management system for electric vehicles. Journal of Energy Storage 32:101940. doi:10.1016/j.est.2020.101940.
  • Shen, M., and Q. Gao. 2020b. System simulation on refrigerant-based battery thermal management technology for electric vehicles. Energy Conversion and Management 203:112176. doi:10.1016/j.enconman.2019.112176.
  • Sovacool, B. K., S. Griffiths, J. Kim, and M. Bazilian. 2021. Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renewable and Sustainable Energy Reviews 141:110759. doi:10.1016/j.rser.2021.110759.
  • Standardization Administration of the People’s Republic of China. 2017. Number designation and safety classification of refrigerants, GB/T7778–2017. Beijing: Standardization Administration of the People’s Republic of China.
  • Wang, Y., Q. Gao, and H. Wang. 2020. Structural design and its thermal management performance for battery modules based on refrigerant cooling method. International Journal of Energy Research 45 (3):3821–37. doi:10.1002/er.6035.
  • Wang, Z. K., Y. A. Wang, Z. F. Xie, H. Li, and W. L. Peng. 2022. Parametric investigation on the performance of a direct evaporation cooling battery thermal management system. International Journal of Heat and Mass Transfer 189:122685. doi:10.1016/j.ijheatmasstransfer.2022.122685.
  • Wang, Y. F., and J. T. Wu. 2020. Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles. Energy Conversion and Management 207:12569. doi:10.1016/j.enconman.2020.112569.
  • Wei, Y., and M. Agelin-Chaab. 2019. Development and experimental analysis of a hybrid cooling concept for electric vehicle battery packs. Journal of Energy Storage 25:100906. doi:10.1016/j.est.2019.100906.
  • Wu, H. L., X. F. Peng, P. Ye, and Y. E. Gong. 2007. Simulation of refrigerant flow boiling in serpentine tubes. International Journal of Heat and Mass Transfer 50 (5–6):1186–119. doi:10.1016/j.ijheatmasstransfer.2006.10.013.
  • Yates, M., M. Akrami, and A. A. Javadi. 2021. Analysing the performance of liquid cooling designs in cylindrical lithium-ion batteries. Journal of Energy Storage 33:100913. doi:10.1016/j.est.2019.100913.
  • Yuan, Y., L. Zhang, and J. Liu. 2021. Flow boiling heat transfer characteristics of R1234yf and R134a in small-diameter tubes. Chemical Engineering 49:38–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.