97
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Exploring the potential of ternary fuel blends for enhanced engine efficiency and reduced emissions: application of multi-objective optimization

ORCID Icon, & ORCID Icon
Pages 8751-8770 | Received 15 Mar 2023, Accepted 27 Jun 2023, Published online: 04 Jul 2023

References

  • Bora, B. J., T. Dai Tran, K. Prasad Shadangi, P. Sharma, Z. Said, P. Kalita, A. Buradi, V. Nhanh Nguyen, H. Niyas, M. Tuan Pham, et al. 2022. Improving combustion and emission characteristics of a biogas/biodiesel-powered dual-fuel diesel engine through trade-off analysis of operation parameters using response surface methodology. Sustainable Energy Technologies and Assessments 53:102455. doi:10.1016/j.seta.2022.102455.
  • Bora, B. J., and U. K. Saha. 2016. optimisation of injection timing and compression ratio of a raw biogas powered dual fuel diesel engine. Applied Thermal Engineering 92:111–21. doi:10.1016/j.applthermaleng.2015.08.111.
  • Burnett, R. T., S. Cakmak, J. R. Brook, and D. Krewski. 1997. The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases. Environmental Health Perspectives 105:614–20. doi:10.1289/ehp.97105614.
  • Chamkalani, A., S. Zendehboudi, N. Rezaei, and K. Hawboldt. 2020. A critical review on life cycle analysis of algae biodiesel: Current challenges and future prospects. Renewable and Sustainable Energy Reviews 134:110143. doi:10.1016/j.rser.2020.110143.
  • Czerwik-Marcinkowska, J., K. Gałczyńska, J. Oszczudłowski, A. Massalski, J. Semaniak, and M. Arabski. 2020. Fatty acid methyl esters of the aerophytic cave alga coccomyxa subglobosa as a source for biodiesel production. Energies (Basel) 13 (24):6494. doi:10.3390/en13246494.
  • Dabi, M., and U. K. Saha. 2020. Influence of ethanol on the performance, combustion and emission characteristics of a stationary diesel engine run on diesel–Mesua ferrea linn oil blend. Sādhanā 45 (1):0123456789. doi:10.1007/s12046-020-01518-8.
  • Das, S., and V. V. Goud. 2021. RSM-optimised slow pyrolysis of rice husk for bio-oil production and its upgradation. Energy 225:120161. doi:10.1016/j.energy.2021.120161.
  • da Silva Neto, J. V., W. L. R. Gallo, and E. A. A. Nour. 2020. Production and use of biogas from vinasse: Implications for the energy balance and GHG emissions of sugar cane ethanol in the Brazilian context. Environmental Progress & Sustainable Energy 39 (1):13226. doi:10.1002/ep.13226.
  • Devaraj, J., Y. Robinson, and P. Ganapathi. 2015. Experimental investigation of performance, emission and combustion characteristics of waste plastic pyrolysis oil blended with diethyl ether used as fuel for diesel engine. Energy 85:304–09. doi:10.1016/J.ENERGY.2015.03.075.
  • Edwards, L., P. Wilkinson, G. Rutter, and A. Milojevic. 2022. Health effects in people relocating between environments of differing ambient air pollution concentrations: A literature review. Environmental Pollution 292:118314. doi:10.1016/J.ENVPOL.2021.118314.
  • Fan, J., L. Wu, F. Zhang, H. Cai, X. Wang, X. Lu, and Y. Xiang. 2018. Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature. Renewable and Sustainable Energy Reviews 94:732–47. doi:10.1016/J.RSER.2018.06.029.
  • Gharehghani, A., M. Mirsalim, and R. Hosseini. 2017. Effects of waste fish oil biodiesel on diesel engine combustion characteristics and emission. Renew Energy 101:930–36. doi:10.1016/j.renene.2016.09.045.
  • Harington, J. 1965. The desirability function. Industrial Quality Control 21:494–98.
  • Hemmat Esfe, M., and M. H. Hajmohammad. 2017. Thermal conductivity and viscosity optimization of nanodiamond-Co 3 O 4/EG (40: 60) aqueous nanofluid using NSGA-II coupled with RSM. Journal of Molecular Liquids 238:545–52. doi:10.1016/j.molliq.2017.04.056.
  • Hoang, A. T., T. H. Le, T. Chitsomboon, and A. Koonsrisook. 2021. Experimental investigation of solar energy-based water distillation using inclined metal tubes as collector and condenser, Energy Sources, Part A: Recovery. Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2021.1966139.
  • Hoang, A. T., S. Nižetić, and A. I. Ölçer. 2021. 2,5-Dimethylfuran (DMF) as a promising biofuel for the spark ignition engine application: A comparative analysis and review. Fuel 285:119140. doi:10.1016/j.fuel.2020.119140.
  • Hoang, A. T., A. I. Ölçer, and S. Nižetić. 2021. Prospective review on the application of biofuel 2,5-dimethylfuran to diesel engine. Journal of the Energy Institute 94:360–86. doi:10.1016/j.joei.2020.10.004.
  • Kaloudas, D., N. Pavlova, and R. Penchovsky. 2021. Lignocellulose, algal biomass, biofuels and biohydrogen: A review. Environmental Chemistry Letters 19:2809–24. doi:10.1007/s10311-021-01213-y.
  • Kozina, A., G. Radica, and S. Nižetić. 2020. Analysis of methods towards reduction of harmful pollutants from diesel engines. Journal of Cleaner Production 262. doi:10.1016/j.jclepro.2020.121105.
  • Kumar, A. N., B. Ashok, K. Nanthagopal, H. C. Ong, M. J. Geca, J. Victor, R. Vignesh, A. K. Jeevanantham, C. Kannan, and P. S. Kishore. 2022. Experimental analysis of higher alcohol–based ternary biodiesel blends in CI engine parameters through multivariate and desirability approaches. Biomass convers: Biorefin 12 (5):1525–40. doi:10.1007/s13399-020-01134-w.
  • Lee, C. C., W. Xing, and C. C. Lee. 2022. The impact of energy security on income inequality: The key role of economic development. Energy 248:123564. doi:10.1016/J.ENERGY.2022.123564.
  • Lee, C. C., Z. Yuan, and Q. Wang. 2022. How does information and communication technology affect energy security? International Evidence, Energy Econ 109:105969. doi:10.1016/J.ENECO.2022.105969.
  • Le, A. T., D. Q. Tran, T. T. Tran, A. T. Hoang, and V. V. Pham. 2020. Performance and combustion characteristics of a retrofitted CNG engine under various piston-top shapes and compression ratios, energy sources, pARt A: Recovery. Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2020.1804016.
  • Mayer, F. D., M. Brondani, M. C. V. Carrillo, R. Hoffmann, and E. E. S. Lora. 2020. Revisiting energy efficiency, renewability, and sustainability indicators in biofuels life cycle: Analysis and standardization proposal. Journal of Cleaner Production 252:119850. doi:10.1016/j.jclepro.2019.119850.
  • Mishra, A., A. Thangaraj R, and P. S. Mehta. 2021. Farm-to-fire analysis of karanja biodiesel. Biofuels, Bioproducts and Biorefining 15:1737–52. doi:10.1002/bbb.2271.
  • Molino, A., V. Larocca, S. Chianese, and D. Musmarra. 2018. Biofuels Production by Biomass Gasification: A Review. Energies (Basel) 11:811. doi:10.3390/en11040811.
  • Nayak, S. K., S. Nižetić, V. V. Pham, Z. Huang, A. I. Ölçer, V. G. Bui, K. Wattanavichien, and A. T. Hoang. 2022. Influence of injection timing on performance and combustion characteristics of compression ignition engine working on quaternary blends of diesel fuel, mixed biodiesel, and t-butyl peroxide. Journal of Cleaner Production 333:130160. doi:10.1016/j.jclepro.2021.130160.
  • Necati, A., M. Canakci, A. Turkcan, and C. Sayin. 2009. Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters. Fuel 88 (4):629–36. doi:10.1016/j.fuel.2008.09.023.
  • Nguyen, X. P., N. D. Le, V. V. Pham, T. T. Huynh, V. H. Dong, and A. T. Hoang. 2021. Mission, challenges, and prospects of renewable energy development in Vietnam, energy sources, part A: Recovery. Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2021.1965264.
  • Padilla-Atondo, J. M., J. Limon-Romero, A. Perez-Sanchez, D. Tlapa, Y. Baez-Lopez, C. Puente, and S. Ontiveros. 2021. The impact of hydrogen on a stationary gasoline-based engine through multi-response optimization: A desirability function approach. Sustainability (Switzerland) 13:1–19. doi:10.3390/su13031385.
  • Patel, C., K. Chandra, J. Hwang, R. A. Agarwal, N. Gupta, C. Bae, T. Gupta, and A. K. Agarwal. 2019. Comparative compression ignition engine performance, combustion, and emission characteristics, and trace metals in particulates from waste cooking oil, jatropha and karanja oil derived biodiesels. Fuel 236:1366–76. doi:10.1016/j.fuel.2018.08.137.
  • Pattanaik, A., and V. Rayasam. 2018. Analysis of reverse cationic iron ore fines flotation using RSM-D-optimal design – an approach towards sustainability. Advanced Powder Technology 29:3404–14. doi:10.1016/j.apt.2018.09.021.
  • Rajan, K., and K. R. Senthil Kumar. 2020. Experimental study on diesel engine working characteristics using yellow oleander biodiesel with the effect of different injection timings, Energy Sources, Part A: Recovery. Utilization, and Environmental Effects 1–14. doi:10.1080/15567036.2020.1722295.
  • Ramachander, J., S. K. Gugulothu, G. R. K. Sastry, J. Kumar Panda, and M. S. Surya. 2021. Performance and emission predictions of a CRDI engine powered with diesel fuel: A combined study of injection parameters variation and Box-Behnken response surface methodology based optimization. Fuel 290:120069. doi:10.1016/j.fuel.2020.120069.
  • Rao, A., Y. Liu, and F. Ma. 2022. Study of NOx emission for hydrogen enriched compressed natural along with exhaust gas recirculation in spark ignition engine by Zeldovich’ mechanism, support vector machine and regression correlation. Fuel 318:123577. doi:10.1016/J.FUEL.2022.123577.
  • Sanjeevannavar, M. B., N. R. Banapurmath, S. V. Ganachari, and M. E. M. Soudagar. 2021. Experimental investigation on CI engine with jatropha biodiesel-hydrogen peroxide blends. IOP Conference Series: Materials Science & Engineering 1070 (1):012102. doi:10.1088/1757-899x/1070/1/012102.
  • Sathyamurthy, R., D. Balaji, S. Gorjian, S. J. Muthiya, R. Bharathwaaj, S. Vasanthaseelan, and F. A. Essa. 2021. Performance, combustion and emission characteristics of a DI-CI diesel engine fueled with corn oil methyl ester biodiesel blends. Sustainable Energy Technologies and Assessments 43:100981. doi:10.1016/j.seta.2020.100981.
  • Şen, M. 2019. The effect of the injection pressure on single cylinder diesel engine fueled with propanol–diesel blend. Fuel 254. doi:10.1016/j.fuel.2019.115617.
  • Sharma, P. 2020. Gene expression programming-based model prediction of performance and emission characteristics of a diesel engine fueled with linseed oil biodiesel/diesel blends: An artificial intelligence approach, Energy Sources, Part A: Recovery. Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2020.1829204.
  • Sharma, P. 2022. Prediction-optimization of the effects of di-tert butyl peroxide-biodiesel blends on engine performance and emissions using multi-objective response surface methodology. Journal of Energy Resources Technology, Transactions of the ASME 144:1–26. doi:10.1115/1.4052237.
  • Sharma, N., A. K. Agarwal, P. Eastwood, T. Gupta, and A. P. Singh. 2018. Introduction to Air Pollution and Its Control, Energy, Environment, and Sustainability 3–7. doi: 10.1007/978-981-10-7185-0_1.
  • Sharma, P., B. B. Sahoo, Z. Said, H. Hadiyanto, X. P. Nguyen, S. Nižetić, Z. Huang, A. T. Hoang, and C. Li. 2022. Application of machine learning and Box-Behnken design in optimizing engine characteristics operated with a dual-fuel mode of algal biodiesel and waste-derived biogas. International Journal of Hydrogen Energy 48 (18):6738–60. doi:10.1016/j.ijhydene.2022.04.152.
  • Sharon, H., K. Karuppasamy, D. R. Soban Kumar, and A. Sundaresan. 2012. A test on DI diesel engine fueled with methyl esters of used palm oil. Renew Energy 47:160–66. doi:10.1016/j.renene.2012.04.032.
  • Shu Lei, X., J. Jing Shuang, P. Yang, and Y. Wen Liu. 2019. Parametric study and optimization of dimpled tubes based on response surface methodology and desirability approach. Int: J Heat Mass Transfer 142:118453. doi:10.1016/J.IJHEATMASSTRANSFER.2019.118453.
  • Simsek, S., and S. Uslu. 2020. Determination of a diesel engine operating parameters powered with canola, safflower and waste vegetable oil based biodiesel combination using response surface methodology (RSM). Fuel 270:117496. doi:10.1016/j.fuel.2020.117496.
  • Srihari, S., S. Thirumalini, and K. Prashanth. 2017. An experimental study on the performance and emission characteristics of PCCI-DI engine fuelled with diethyl ether-biodiesel-diesel blends. Renew Energy 107:440–47. doi:10.1016/J.RENENE.2017.01.015.
  • Thodda, G., V. R. Madhavan, and L. Thangavelu. 2020. Predictive modelling and optimization of performance and emissions of acetylene fuelled CI engine using ANN and RSM, Energy Sources, Part A: Recovery. Utilization, and Environmental Effects (2):3544–62. doi:10.1080/15567036.2020.1829191.
  • Tran, L. S., J. Pieper, M. Zeng, Y. Li, X. Zhang, W. Li, I. Graf, F. Qi, and K. Kohse-Höinghaus. 2017. Influence of the biofuel isomers diethyl ether and n-butanol on flame structure and pollutant formation in premixed n-butane flames. Combustion & Flame 175:47–59. doi:10.1016/J.COMBUSTFLAME.2016.06.031.
  • Yaashikaa, P. R., P. S. Kumar, and S. Karishma. 2022. Bio-derived catalysts for production of biodiesel: A review on feedstock, oil extraction methodologies, reactors and lifecycle assessment of biodiesel. Fuel 316:123379. doi:10.1016/j.fuel.2022.123379.
  • Zahid, I., M. Ayoub, B. B. Abdullah, M. H. Nazir, M. Ameen, M. H. M. Y. Zulqarnain, M. Inayat, and A. Danish. 2020. Production of fuel additive solketal via catalytic conversion of biodiesel-derived glycerol. Industrial & Engineering Chemistry Research 59 (48):20961–78. doi:10.1021/ACS.IECR.0C04123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.