108
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Adaptation of adsorption cooling system for hot and dry climates: Use of ground water heat exchanger coupled to direct evaporative cooling tower

, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 9133-9148 | Received 24 Apr 2023, Accepted 28 Jun 2023, Published online: 09 Jul 2023

References

  • Belloufi, Y., S. Zerouali, A. Rouag, F. Aissaoui, R. Atmani, A. Brima, and N. Moummi. 2022. Transient assessment of an earth air heat exchanger in warm climatic conditions. Geothermics 104:102442. doi:10.1016/j.geothermics.2022.102442.
  • Biyanto, T. R., E. K. Gonawan, G. Nugroho, R. Hantoro, H. Cordova, and K. Indrawati. 2016. Heat exchanger network retrofit throughout overall heat transfer coefficient by using genetic algorithm. Applied Thermal Engineering 94:274–81. doi:10.1016/j.applthermaleng.2015.10.146.
  • Bougriou, C. 2002. Calcul et technologie des échangeurs de chaleur, cours de technologie et calcul des échangeurs de chaleur. Batna, Algeria: University of Batna.
  • Bouzeffour, F., B. Khelidj, and M. Tahar Abbes. 2016. Experimental investigation of a solar adsorption refrigeration system working with silicagel/water pair: A case study for Bou-Ismail solar data. Solar Energy 131:165–75. doi:10.1016/j.solener.2016.02.043.
  • Dreyer, A. A., D. E. Kriel, and P. J. Erens. 1992. Analysis of spray-cooled finned-tube heat exchangers. Heat Transfer Engineering 13 (4):53–71. doi:10.1080/01457639208939788.
  • Elmer, D., and G. Schiller. 1981. A preliminary examination of the dehumidification potential of earth to air heat exchangers. Proceedings of the International passive cooling conference. Miami, Florida, p.161–65.
  • Fallahsohi, H. 2011a. Modélisation dynamique des échangeurs diphasiques, appliquée aux groupes frigorifiques contrôlés par une commande avancée. PhD thesis, INSA de Lyon, France.
  • Fallahsohi, H. 2011b. Modèlisation dynamique des échangeurs diphasiques, appliquée aux groupes frigorifiques contrôlés par une commande avancée, Laboratoire d’Energétique de l’ECAM de LYON, 161. Lyon: INSA de Lyon.
  • Fouda, A., and Z. Melikyan. 2011. A simplified model for analysis of heat and mass transfer in a direct evaporative cooler. Applied Thermal Engineering 31 (5):932–36. doi:10.1016/j.applthermaleng.2010.11.016.
  • Gnielinski, V. 1976. New equations for heat and mass transfer in turbulent pipe and channel flow. International Chemistry Engineering 16 (2):359–68.
  • Gong, X., L. Xia, Z. Ma, G. Chen, and L. Wei. 2018. Investigation on the optimal cooling tower input capacity of a cooling tower assisted ground source heat pump system. Energy and Buildings 174:239–53. doi:10.1016/j.enbuild.2018.06.024.
  • Hassanzadeh, R., and M. Khalili. 2018. Replacing the wet cooling tower with a ground source heat exchanger as a clean technology. Journal of Building Engineering 18:331–42. doi:10.1016/j.jobe.2018.04.001.
  • Infoclimat. 2021. Climatology of the year 2020 in Biskra. Accessed February 8, 2023. https://www.infoclimat.fr/climatologie/annee/2021/biskra/valeurs/60525.html.
  • Kabeel, A., and M. Bassuoni. 2017. A simplified experimentally tested theoretical model to reduce water consumption of a direct evaporative cooler for dry climates. International Journal of Refrigeration 82:487–94. doi:10.1016/j.ijrefrig.2017.06.010.
  • Kalantari, H., S. A. Ghoreishi-Madiseh, J. C. Kurnia, and A. P. Sasmito. 2021. An analytical correlation for conjugate heat transfer in fin and tube heat exchangers. International Journal of Thermal Sciences 164:106915. doi:10.1016/j.ijthermalsci.2021.106915.
  • Kheireddine, M.-A., A. Rouag, A. Benchabane, N. Boutif, and A. Labed. 2020. Hybrid cooling tower for a solar adsorption cooling system: Comparative study between dry and wet modes in hot working conditions. In Green energy and technology: Environmentally-benign energy solutions, ed. B. Dincer, C. O. Colpan, and M. A. Ezan, 293–308. Springer. doi: 10.1007/978-3-030-20637-6_16
  • Khodakaram-Tafti, A., and A.-A. Golneshan. 2020. A general mathematical model for predicting the thermal performance of natural draft dry cooling towers and extending it to three aligned towers. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–23. doi:10.1080/15567036.2020.1844348.
  • Kim, N.-H., J.-H. Yun, and R. Webb. 1997. Heat transfer and friction correlations for wavy plate fin-and-tube heat exchangers. Journal of Heat Transfer 119 (3):560–67. doi:10.1115/1.2824141.
  • Kovačević, I., and M. Sourbron. 2017. The numerical model for direct evaporative cooler. Applied Thermal Engineering 113:8–19. doi:10.1016/j.applthermaleng.2016.11.025.
  • Mehdid, C.-E., A. Benchabane, A. Rouag, N. Moummi, M.-A. Melhegueg, A. Moummi, M.-L. Benabdi, and A. Brima. 2018. Thermal design of Earth-to-air heat exchanger. Part II a new transient semi-analytical model and experimental validation for estimating air temperature. Journal of Cleaner Production 198:1536–44. doi:10.1016/j.jclepro.2018.07.063.
  • Moreira, D., G. Zabala, R. Villanueva, and G. Soriano. 2017. Performance assessment of a cooling tower and a ground source heat pump for heat dissipation. ASME International Mechanical Engineering Congress and Exposition, November 3–9, 2017, Tampa, Florida, USA, Vol. 58417, p. V006T008A043. American Society of Mechanical Engineers.
  • Ozgener, O., L. Ozgener, and D. Y. Goswami. 2011. Experimental prediction of total thermal resistance of a closed loop EAHE for greenhouse cooling system. International Communications in Heat and Mass Transfer 38 (6):711–16. doi:10.1016/j.icheatmasstransfer.2011.03.009.
  • Rouag, A., A. Benchabane, A. Labed, K. Belhadj, and N. Boultif. 2016. Applicability of a solar adsorption cooling machine in semiarid regions: Proposal of supplementary cooler using earth-water heat exchanger. International Journal of Heat and Technology 34 (2):281–86. doi:10.18280/ijht.340218.
  • Rouag, A., A. Benchabane, and C.-E. Mehdid. 2018. Thermal design of earth-to-air heat exchanger. Part I a new transient semi-analytical model for determining soil temperature. Journal of Cleaner Production 182:538–44. doi:10.1016/j.jclepro.2018.02.089.
  • Rouag, A., A. Benchabane, C.-E. Mehdid, M.-A. Melhegueg, N. Boultif, S.-H. Sellam, and A. Labed, 2020. Technical solution for malfunction of air coolers and condensers in hot climates: Thermal design of a geothermal air-cooler. Energy Sources, Part A: Recovery, Utilization, Environmental Effects, 1–14.
  • Sarbu, I., and C. Sebarchievici. 2013. Review of solar refrigeration and cooling systems. Energy and Buildings 67:286–97. doi:10.1016/j.enbuild.2013.08.022.
  • Scott, N. 1965. Analysis and performance of an earth-air heat exchanger. In Presented at the 1965 Winter meeting, ed. A. S. O. A. Engineer, 65–840. Chicago, Illinois: ASAE.
  • Sellam, S.-H., A. Moummi, C.-E. Mehdid, A. Rouag, A.-H. Benmachiche, M.-A. Melhegueg, and A. Benchabane. 2022. Experimental performance evaluation of date palm fibers for a direct evaporative cooler operating in hot and arid climate. Case Studies in Thermal Engineering 35:102119. doi:10.1016/j.csite.2022.102119.
  • Shende, N., M. Bhurle, H. Bhagwat, O. Deokatte, and R. A. Patil, 2021. Thermal analysis of earth air tube heat exchanger for cooling tower. Techno-Societal 2020: Proceedings of the 3rd International Conference on Advanced Technologies for Societal Applications—Volume 2. Springer, pp. 237–50.
  • SorTech. 2009. SorTech adsorption chiller ACS 08/ACS 15, design manual, version. 2.2 ed. Halle: SorTech.
  • Starace, G., M. Fiorentino, B. Meleleo, and C. Risolo. 2018. The hybrid method applied to the plate-finned tube evaporator geometry. International Journal of Refrigeration 88:67–77. doi:10.1016/j.ijrefrig.2017.12.007.
  • Wang, C.-C., and K.-Y. Chi. 2000. Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I: New experimental data. International Journal of Heat and Mass Transfer 43 (15):2681–91. doi:10.1016/S0017-9310(99)00332-4.
  • Wu, J., X. Huang, and H. Zhang. 2009. Theoretical analysis on heat and mass transfer in a direct evaporative cooler. Applied Thermal Engineering 29 (5–6):980–84. doi:10.1016/j.applthermaleng.2008.05.016.
  • Zoellick, B., 1981. Predicted and observed performance of a buried earth-air heat exchanger cooling system. Proceeding of Annual Meeting American Sector in International Solor Energy Society, Sunspace, Inc., Ada, OK, United States, 822–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.