458
Views
1
CrossRef citations to date
0
Altmetric
Review Article

An extensive investigation on leveraging machine learning techniques for high-precision predictive modeling of CO2 emission

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 9149-9177 | Received 18 May 2023, Accepted 28 Jun 2023, Published online: 09 Jul 2023

References

  • Aamir, M., M. A. Bhatti, S. U. Bazai, S. Marjan, A. M. Mirza, A. Wahid, A. Hasnain, and U. A. Bhatti. 2022. Predicting the Environmental Change of Carbon Emission Patterns in South Asia: A Deep Learning Approach Using BiLSTM. Atmosphere (Basel) 13 (12):2011. doi:10.3390/atmos13122011.
  • Abdoos, A. A., P. Khorshidian Mianaei, and M. Rayatpanah Ghadikolaei. 2016. Combined VMD-SVM based feature selection method for classification of power quality events. Applied Soft Computing 38:637–46. doi:10.1016/j.asoc.2015.10.038.
  • Ağbulut, Ü. 2022. Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustainable Production and Consumption 29:141–57. doi:10.1016/j.spc.2021.10.001.
  • Ahmed, Z., M. M. Asghar, M. N. Malik, and K. Nawaz. 2020. Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China. Resource Policy 67:101677. doi:10.1016/j.resourpol.2020.101677.
  • Akour, I., M. Alshurideh, B. Al Kurdi, A. Al Ali, and S. Salloum. 2021. Using machine learning algorithms to predict people’s intention to use Mobile Learning Platforms During the COVID-19 Pandemic: Machine Learning Approach. JMIR Medical Education 7 (1):e24032. doi:10.2196/24032.
  • Alam, T., and A. AlArjani. 2021. Forecasting CO 2 Emissions in Saudi Arabia Using Artificial Neural Network, Holt-Winters Exponential Smoothing, and Autoregressive Integrated Moving Average Models. 2021 Int. Conf. Technol. Policy Energy Electr. Power, IEEE, Jakarta, Indonesia, 125–29.
  • Aljaaf, A. J., T. M. Mohsin, D. Al-Jumeily, and M. Alloghani. 2021. A fusion of data science and feed-forward neural network-based modelling of COVID-19 outbreak forecasting in IRAQ. Journal of Biomedical Informatics 118:103766. doi:10.1016/j.jbi.2021.103766.
  • Alpaydin, E. 2020. Introduction to machine learning. MIT press. doi:10.7551/mitpress/13811.001.0001.
  • Altan, A., and S. Karasu. 2019. The effect of kernel values in support vector machine to forecasting performance of financial time series. Journal Cognition Systems 4:17–21.
  • Anghinoni, L., L. Zhao, D. Ji, and H. Pan. 2019. Time series trend detection and forecasting using complex network topology analysis. Neural Networks 117:295–306. doi:10.1016/j.neunet.2019.05.018.
  • Ang, B. W., H. C. Huang, and A. R. Mu. 2009. Properties and linkages of some index decomposition analysis methods. Energy Policy 37 (11):4624–32. doi:10.1016/j.enpol.2009.06.017.
  • Ang, B. W., F. L. Liu, and E. P. Chew. 2003. Perfect decomposition techniques in energy and environmental analysis. Energy Policy 31 (14):1561–66. doi:10.1016/S0301-4215(02)00206-9.
  • Araújo, A., N. Nedjah, A. L. I. Oliveira, and S. R. D. L. Meira. 2019. A deep increasing–decreasing-linear neural network for financial time series prediction. Neurocomputing 347:59–81. doi:10.1016/j.neucom.2019.03.017.
  • Ateş, K. T., C. Şahin, Y. Kuvvetli, B. A. Küren, and A. Uysal. 2021. Sustainable production in cement via artificial intelligence based decision support system: Case study. Case Studies in Construction Materials 15:e00628. doi:10.1016/j.cscm.2021.e00628.
  • Azadeh, A., M. Khakestani, and M. Saberi. 2009. A flexible fuzzy regression algorithm for forecasting oil consumption estimation. Energy Policy 37 (12):5567–79. doi:10.1016/j.enpol.2009.08.017.
  • Bakay, M. S., and Ü. Ağbulut. 2021. Electricity production based forecasting of greenhouse gas emissions in Turkey with deep learning, support vector machine and artificial neural network algorithms. Journal of Cleaner Production 285:125324. doi:10.1016/j.jclepro.2020.125324.
  • Bakır, H., Ü. Ağbulut, A. E. Gürel, G. Yıldız, U. Güvenç, M. E. M. Soudagar, A. T. Hoang, B. Deepanraj, G. Saini, A. Afzal, et al. 2022. Forecasting of future greenhouse gas emission trajectory for India using energy and economic indexes with various metaheuristic algorithms. Journal of Cleaner Production 360:131946. doi:10.1016/j.jclepro.2022.131946.
  • Borovykh, A., C. W. Oosterlee, and S. M. Bohté. 2019. Generalization in fully-connected neural networks for time series forecasting. Journal of Computational Science 36:101020. doi:10.1016/j.jocs.2019.07.007.
  • Breiman, L. 2001. Random Forests. Machine Learning 45 (1):5–32. doi:10.1023/A:1010933404324.
  • Broomhead, D. S., and D. Lowe. 1988. Multivariable Functional Interpolation and Adaptive Networks. Complex Syst 2:321–55.
  • Cai, W., C. Wang, K. Wang, Y. Zhang, and J. Chen. 2007. Scenario analysis on CO2 emissions reduction potential in China’s electricity sector. Energy Policy 35:6445–56. doi:10.1016/j.enpol.2007.08.026.
  • Cao, L., and F. E. H. Tay. 2001. Financial Forecasting Using Support Vector Machines. Neural Computing & Applications 10 (2):184–92. doi:10.1007/s005210170010.
  • Cha, J., J. Park, H. Lee, and M. S. Chon. 2021. A Study of Prediction Based on Regression Analysis for Real-World Co2 Emissions with Light-Duty Diesel Vehicles. International Journal of Automotive Technology 22 (3):569–77. doi:10.1007/s12239-021-0053-z.
  • Chen, W.-H., R. Aniza, A. A. Arpia, H.-J. Lo, A. T. Hoang, V. Goodarzi, and J. Gao. 2022. A comparative analysis of biomass torrefaction severity index prediction from machine learning. Applied Energy 324:119689. doi:10.1016/j.apenergy.2022.119689.
  • Chen, W.-H., J.-S. Wang, M.-H. Chang, A. Tuan Hoang, S. Shiung Lam, E. E. Kwon, and V. Ashokkumar. 2022. Optimization of a vertical axis wind turbine with a deflector under unsteady wind conditions via Taguchi and neural network applications. Energy Conversion & Management 254:115209. doi:10.1016/j.enconman.2022.115209.
  • Cho, H.-K., H.-S. Lee, X.-Y. Wang, M. Ismail, and W.-J. Park. 2015. Evaluation of CO2 emission–absorption of fly-ash-blended concrete structures using cement-hydration-based carbonation model. Materials and Structures 48 (12):3949–63. doi:10.1617/s11527-014-0455-8.
  • Deng, J. L. 1982. Control problems of grey systems. Systems and Control Letters 1 1 (5):288–94. doi:10.1016/S0167-6911(82)80025-X.
  • Díaz-Uriarte, R., and S. Alvarez de Andrés. 2006. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7 (1):3. doi:10.1186/1471-2105-7-3.
  • Ding, S., Y.-G. Dang, X.-M. Li, J.-J. Wang, and K. Zhao. 2017. Forecasting Chinese CO2 emissions from fuel combustion using a novel grey multivariable model. Journal of Cleaner Production 162:1527–38. doi:10.1016/j.jclepro.2017.06.167.
  • Domachowski, Z. 2021. Minimizing Greenhouse Gas Emissions from Ships Using a Pareto Multi-Objective Optimization Approach. Polish Maritime Research 28 (2):96–101. doi:10.2478/pomr-2021-0026.
  • Dong, Z., J. Li, W. Liu, H. Zhang, S. Qi, and Z. Zhang. 2023. Adptive Heading Control of Underactuated Unmanned Surface Vehicle Based on Improved Backpropagation Neural Network. Polish Maritime Research 30 (1):54–64. doi:10.2478/pomr-2023-0006.
  • Dong, H., M. Xue, Y. Xiao, and Y. Liu. 2021. Do carbon emissions impact the health of residents? Considering China’s industrialization and urbanization. The Science of the Total Environment 758:143688. doi:10.1016/j.scitotenv.2020.143688.
  • Dwivedi, Y. K., L. Hughes, A. K. Kar, A. M. Baabdullah, P. Grover, R. Abbas, D. Andreini, I. Abumoghli, Y. Barlette, D. Bunker, et al. 2022. Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action. International Journal of Information Management 63:102456. doi:10.1016/J.IJINFOMGT.2021.102456.
  • Ehteram, M., S. S. Sammen, F. Panahi, and L. M. Sidek. 2021. A hybrid novel SVM model for predicting CO2 emissions using Multiobjective Seagull Optimization. Environmental Science and Pollution Research 28 (46):66171–92. doi:10.1007/s11356-021-15223-4.
  • Emami Javanmard, M., and S. F. Ghaderi. 2022. A Hybrid Model with Applying Machine Learning Algorithms and Optimization Model to Forecast Greenhouse Gas Emissions with Energy Market Data. Sustainable Cities and Society 82:103886. doi:10.1016/j.scs.2022.103886.
  • Emami Javanmard, M., Y. Tang, Z. Wang, and P. Tontiwachwuthikul. 2023. Forecast energy demand, CO2 emissions and energy resource impacts for the transportation sector. Applied Energy 338:120830. doi:10.1016/j.apenergy.2023.120830.
  • Fang, Y., X. Lu, and H. Li. 2021. A random forest-based model for the prediction of construction-stage carbon emissions at the early design stage. Journal of Cleaner Production 328:129657. doi:10.1016/j.jclepro.2021.129657.
  • Fang, D., X. Zhang, Q. Yu, T. C. Jin, and L. Tian. 2018. A novel method for carbon dioxide emission forecasting based on improved Gaussian processes regression. Journal of Cleaner Production 173:143–50. doi:10.1016/j.jclepro.2017.05.102.
  • Fan, F., and Y. Lei. 2016. Decomposition analysis of energy-related carbon emissions from the transportation sector in Beijing. Transportation Research, Part D: Transport & Environment 42:135–45. doi:10.1016/j.trd.2015.11.001.
  • Farahzadi, L., and M. Kioumarsi. 2023. Application of machine learning initiatives and intelligent perspectives for CO2 emissions reduction in construction. Journal of Cleaner Production 384:135504. doi:10.1016/j.jclepro.2022.135504.
  • Farahzadi, L., R. Urbano Gutierrez, A. Riyahi Bakhtiari, H. Azemati, and S. B. Hosseini. 2016. Assessment of Alternative Building Materials in the Exterior Walls for Reduction of Operational Energy and CO2 Emissions. International Journal of Engineering and Advanced Technology 5:183–89.
  • Ghosh, I. A Global Breakdown of Greenhouse Gas Emissions by Sector 2020. https://www.visualcapitalist.com/a-global-breakdown-of-greenhouse-gas-emissions-by-sector/ (accessed February 13, 2023).
  • Goyal, D., T. Goyal, M. SK, G. Goga, A. Dhir, D. Balasubramanian, A. T. Hoang, M. Wae-Hayee, J. S. F. Josephin, A. Sonthalia, et al. 2023. Application of Taguchi design in optimization of performance and emissions characteristics of n-butanol/diesel/biogas under dual fuel mode. Fuel 338:127246. doi:10.1016/j.fuel.2022.127246.
  • Greff, K., R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber. 2017. LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems 28 (10):2222–32. doi:10.1109/TNNLS.2016.2582924.
  • Hammami, D., T. S. Lee, T. B. M. J. Ouarda, and J. Lee. 2012. Predictor selection for downscaling GCM data with LASSO. Journal of Geophysical Research: Atmospheres 117 (D17):117. doi:10.1029/2012JD017864.
  • Hamrani, A., A. Akbarzadeh, and C. A. Madramootoo. 2020. Machine learning for predicting greenhouse gas emissions from agricultural soils. The Science of the Total Environment 741:140338. doi:10.1016/j.scitotenv.2020.140338.
  • Han, L., H. Jing, R. Zhang, and Z. Gao. 2019. Wind power forecast based on improved Long Short Term Memory network. Energy 189:116300. doi:10.1016/j.energy.2019.116300.
  • Heidari, E., S. Bikdeli, and M. R. Mansouri Daneshvar. 2023. A dynamic model for CO2 emissions induced by urban transportation during 2005–2030, a case study of Mashhad, Iran. Environment, Development and Sustainability 25 (5):4217–36. doi:10.1007/s10668-022-02240-7.
  • He, C., M. Ji, M. L. Grieneisen, and Y. Zhan. 2022. A review of datasets and methods for deriving spatiotemporal distributions of atmospheric CO2. Journal of Environmental Management 322:116101. doi:10.1016/j.jenvman.2022.116101.
  • Hinton, G. E., S. Osindero, and Y.-W. Teh. 2006. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation 18:1527–54. doi:10.1162/neco.2006.18.7.1527.
  • Hinton, G. E., and R. R. Salakhutdinov. 2006. Reducing the Dimensionality of Data with Neural Networks. Science (80-) 313:504–07. doi:10.1126/science.1127647.
  • Hochreiter, S., and J. Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9:1735–80. doi:10.1162/neco.1997.9.8.1735.
  • Hosseini, S. M. A., L. Farahzadi, and O. Pons. 2021. Assessing the sustainability index of different post-disaster temporary housing unit configuration types. Journal of Building Engineering 42:102806. doi:10.1016/j.jobe.2021.102806.
  • Hosseini, S. M., A. Saifoddin, R. Shirmohammadi, and A. Aslani. 2019. Forecasting of CO2 emissions in Iran based on time series and regression analysis. Energy Reports 5:619–31. doi:10.1016/j.egyr.2019.05.004.
  • Hu, B. 2018. Application of Evaluation Algorithm for Port Logistics Park Based on Pca-Svm Model. Polish Maritime Research 25 (s3):29–35. doi:10.2478/pomr-2018-0109.
  • Huang, Y., Y. Gao, Y. Gan, and M. Ye. 2021. A new financial data forecasting model using genetic algorithm and long short-term memory network. Neurocomputing 425:207–18. doi:10.1016/j.neucom.2020.04.086.
  • Huseien, G. F., A. R. M. Sam, H. A. Algaifi, and R. Alyousef. 2021. Development of a sustainable concrete incorporated with effective microorganism and fly Ash: Characteristics and modeling studies. Construction and Building Materials 285:122899. doi:10.1016/j.conbuildmat.2021.122899.
  • Hussain, A., D. Al-Jumeily, A. Aljaaf, and N. Radi. 2018. Backpropagation Approach Supported by Image Compression Algorithm for the Classification of Chronic Condition Diseases. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2018:1–1. doi:10.1109/TCBB.2018.2878556.
  • IPCC. 2014. Mitigation of climate change. Contrib Work Gr III to Fifth Assess Rep Intergov Panel Clim Chang. 1454:147.
  • Javadi, P., B. Yeganeh, M. Abbasi, and S. Alipourmohajer. 2021. Energy assessment and greenhouse gas predictions in the automotive manufacturing industry in Iran. Sustainable Production and Consumption 26:316–30. Sustain Prod Consum 2021. doi:10.1016/j.spc.2020.10.014.
  • Jiang, J.-J., B. Ye, J.-P. Ji, and X.-M. Ma. 2014. Research on contribution decomposition by industry to china’s carbon intensity reduction and carbon emission growth. Huanjing Kexue/Environmental Sci 35:4378–86. doi:10.13227/j.hjkx.2014.11.047.
  • Kadri, F., M. Baraoui, I. Nouaouri An LSTM-based deep learning approach with application to predicting hospital emergency department admissions. 2019 Int. Conf. Ind. Eng. Syst. Manag., IEEE; 2019, p. 1–6. 10.1109/IESM45758.2019.8948130.
  • Kar, A. K., S. K. Choudhary, and V. K. Singh. 2022. How can artificial intelligence impact sustainability: A systematic literature review. Journal of Cleaner Production 376:134120. doi:10.1016/j.jclepro.2022.134120.
  • Kaynar, O., I. Yilmaz, and F. Demirkoparan. 2011. Forecasting of natural gas consumption with neural network and neuro fuzzy system. Energy Educ Sci Technol Part A Energy Sci Res 26:221–38.
  • Kouziokas, G. N. 2019. Long Short-Term memory (LSTM) Deep Neural Networks in Energy Appliances Prediction. 2019 Panhellenic Conf 1–5. Electron. Telecommun., IEEE. doi:10.1109/PACET48583.2019.8956252
  • Kumar, P., L. D. Hollebeek, A. K. Kar, and J. Kukk. 2023. Charting the intellectual structure of customer experience research. Marketing Intelligence & Planning 41 (1):31–47. doi:10.1108/MIP-05-2022-0185.
  • Kurani, A., P. Doshi, A. Vakharia, and M. Shah. 2023. A comprehensive comparative study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting. Annals of Data Science 10 (1):183–208. doi:10.1007/s40745-021-00344-x.
  • Lamas, M. I., C. G. R, J. T, and J. D. R. 2015. Numerical analysis of emissions from marine engines using alternative fuels. Polish Maritime Research 22 (4):48–52. doi:10.1515/pomr-2015-0070.
  • Lancet, T. 2016. The Lancet. Air pollution—crossing borders. Lancet 388 (10040):103. doi:10.1016/S0140-6736(16)31019-4.
  • Lee, R., Y. R. Gwak, J. M. Sohn, and S. H. Lee. 2021. The prediction of CO 2 emissions in domestic power generation sector between 2020 and 2030 for Korea. Energy & Environment 32 (5):855–73. doi:10.1177/0958305X20971628.
  • Lee, K.-T., J.-Y. Tsai, W.-H. Chen, D. S. Gunarathne, K.-Q. Tran, K.-Q. Tran, A. Selvarajoo, and V. Goodarzi. 2022. Energy-saving drying strategy of spent coffee grounds for co-firing fuel by adding biochar for carbon sequestration to approach net zero. Fuel 326:124984. doi:10.1016/j.fuel.2022.124984.
  • Lewis, P., M. Leming, and W. Rasdorf. 2012. Impact of engine idling on fuel use and CO2 emissions of nonroad diesel construction equipment. Journal of Management in Engineering 28 (1):31–38. doi:10.1061/(ASCE)ME.1943-5479.0000068.
  • Li, Y. 2018. Research on the forecast of second-hand housing transaction price in Beijing Based on BP Neural Network. Cap Univ Econ Bus 11:1–10.
  • Liang, Y., D. Niu, H. Wang, and Y. Li. 2017. Factors affecting transportation sector CO2 emissions growth in China: An LMDI Decomposition Analysis. Sustainability 9 (10):1730. doi:10.3390/su9101730.
  • Li, D.-C., C.-J. Chang, C.-C. Chen, and W.-C. Chen. 2012. Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case. Omega 40 (6):767–73. doi:10.1016/j.omega.2011.07.007.
  • Li, W., and S. Gao. 2018. Prospective on energy related carbon emissions peak integrating optimized intelligent algorithm with dry process technique application for China’s cement industry. Energy 165:33–54. doi:10.1016/j.energy.2018.09.152.
  • Li, Z., Y. Li, and S. Shao. 2019. Analysis of influencing factors and trend forecast of carbon emission from energy consumption in China Based on Expanded STIRPAT Model. Energies 12 (16):3054. doi:10.3390/en12163054.
  • Lin, B., and H. Liu. 2015a. CO2 emissions of China’s commercial and residential buildings: Evidence and reduction policy. Building & Environment 92:418–31. doi:10.1016/j.buildenv.2015.05.020.
  • Lin, B., and H. Liu. 2015b. CO2 mitigation potential in China’s building construction industry: A comparison of energy performance. Building & Environment 94:239–51. doi:10.1016/j.buildenv.2015.08.013.
  • Liu, D., S. Lee, Y. Huang, and C. Chiu. 2020. Air pollution forecasting based on attention‐based LSTM neural network and ensemble learning. Expert Systems 37 (3):37. doi:10.1111/exsy.12511.
  • Liu, Z., D. Li, J. Zhang, M. Saleem, Y. Zhang, R. Ma, Y. He, J. Yang, H. Xiang, H. Wei, et al. 2020. Effect of simulated acid rain on soil CO2, CH4 and N2O emissions and microbial communities in an agricultural soil. Geoderma 366:114222. doi:10.1016/j.geoderma.2020.114222.
  • Liu, H., X. Mi, and Y. Li. 2018. Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network. Energy Conversion & Management 156:498–514. doi:10.1016/j.enconman.2017.11.053.
  • Liu, H., H. Xu, Y. Yan, Z. Cai, T. Sun, and W. Li. 2020. Bus arrival time prediction based on LSTM and spatial-temporal feature vector. IEEE Access 8:11917–29. doi:10.1109/ACCESS.2020.2965094.
  • Li, H. X., L. Zhang, D. Mah, and H. Yu. 2017. An integrated simulation and optimization approach for reducing CO 2 emissions from on-site construction process in cold regions. Energy & Buildings 138:666–75. doi:10.1016/j.enbuild.2016.12.030.
  • Luo, C., C. Tan, X. Wang, and Y. Zheng. 2019. An evolving recurrent interval type-2 intuitionistic fuzzy neural network for online learning and time series prediction. Applied Soft Computing 78:150–63. doi:10.1016/j.asoc.2019.02.032.
  • Ma, Z., S. Dey, S. Christopher, R. Liu, J. Bi, P. Balyan, and Y. Liu. 2022. A review of statistical methods used for developing large-scale and long-term PM2.5 models from satellite data. Remote Sensing of Environment 269:112827. doi:10.1016/j.rse.2021.112827.
  • Malik, A., E. Hussain, S. Baig, and M. F. Khokhar. 2020. Forecasting CO 2 emissions from energy consumption in Pakistan under different scenarios: The China–Pakistan Economic Corridor. Greenhouse Gases: Science and Technology 10 (2):380–89. doi:10.1002/ghg.1968.
  • Malla, F. A., A. Mushtaq, S. A. Bandh, I. Qayoom, A. T. Hoang. 2022. Understanding climate change: scientific opinion and public perspective clim. Chang Cham. Springer International Publishing, 1–20. doi:10.1007/978-3-030-86290-9_1
  • Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, Pirani, A., Moufouma-Okia, W., Péan, C., and Pidcock, R. 2018. Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming, 1–3. Cambridge University Press.
  • Ma, M., R. Yan, and W. Cai. 2017. An extended STIRPAT model-based methodology for evaluating the driving forces affecting carbon emissions in existing public building sector: Evidence from China in 2000–2015. Natural Hazards 89 (2):741–56. doi:10.1007/s11069-017-2990-4.
  • Meng, M., and M. Li. 2020. Decomposition analysis and trend prediction of CO2 Emissions in China’s Transportation Industry. Sustainability 12 (7):2596. doi:10.3390/su12072596.
  • Mirmozaffari, M., E. Shadkam, S. M. Khalili, K. Kabirifar, R. Yazdani, and T. Asgari Gashteroodkhani. 2021. A novel artificial intelligent approach: Comparison of machine learning tools and algorithms based on optimization DEA Malmquist productivity index for eco-efficiency evaluation. International Journal of Energy Sector Management 15 (3):523–50. doi:10.1108/IJESM-02-2020-0003.
  • Misra, S., H. Li, and J. He. 2020. Robust geomechanical characterization by analyzing the performance of shallow-learning regression methods using unsupervised clustering methods. Machine Learning Subsurf Charact Elsevier 129–55. doi:10.1016/B978-0-12-817736-5.00005-3.
  • M K, A. N., and M. A. V. 2020. Role of energy use in the prediction of CO2 emissions and economic growth in India: Evidence from artificial neural networks (ANN). Environmental Science and Pollution Research 27 (19):23631–42. doi:10.1007/s11356-020-08675-7.
  • Møller, M. F. 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6 (4):525–33. doi:10.1016/S0893-6080(05)80056-5.
  • Mostafaeipour, A., A. Bidokhti, M.-B. Fakhrzad, A. Sadegheih, and Y. Zare Mehrjerdi. 2022. A new model for the use of renewable electricity to reduce carbon dioxide emissions. Energy 238:121602. doi:10.1016/j.energy.2021.121602.
  • Namboori, S. 2020. Forecasting carbon dioxide emissions in the United States using Machine Learning. School of Computing, National College of Ireland.
  • National Development and Reform Commission. 2016. About Strengthening the Construction of Coal Chemical Industry Project Management Promote the Healthy Development of the Industry. Beijing, China.
  • Niu, D., K. Wang, J. Wu, L. Sun, Y. Liang, X. Xu, and X. Yang. 2020. Can China achieve its 2030 carbon emissions commitment? Scenario analysis based on an improved general regression neural network. Journal of Cleaner Production 243:118558. doi:10.1016/j.jclepro.2019.118558.
  • Nižetić, S., M. Arıcı, and A. T. Hoang. 2023. Smart and Sustainable Technologies in Energy Transition. Journal of Cleaner Production 2023:135944. doi:10.1016/j.jclepro.2023.135944.
  • Olanrewaju, O. A., and C. Mbohwa. 2017. Assessing potential reduction in greenhouse gas: An integrated approach. Journal of Cleaner Production 141:891–99. doi:10.1016/j.jclepro.2016.09.098.
  • Pachauri, R. K., M. R. Allen, V. R. Barros, J. Broome, W. Cramer, R. Christ, Church, J. A., Clarke, L., Dahe, Q., and Dasgupta, P. 2014. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Ipcc.
  • Pao, H.-T., H.-C. Fu, and C.-L. Tseng. 2012. Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model. Energy 40 (1):400–09. doi:10.1016/j.energy.2012.01.037.
  • Peng, J. J. 2019. Factors affecting carbon emissions in the construction industry based on STIRPAT Model: Taking Henan Province of China as an Example. Nature Environment & Pollution Technology 18 (3):1035–1040.
  • Pino-Mejías, R., A. Pérez-Fargallo, C. Rubio-Bellido, and J. A. Pulido-Arcas. 2017. Comparison of linear regression and artificial neural networks models to predict heating and cooling energy demand, energy consumption and CO 2 emissions. Energy 118:24–36. doi:10.1016/j.energy.2016.12.022.
  • Pu, X., J. Yao, and R. Zheng. 2022. Forecast of energy consumption and carbon emissions in china’s building sector to 2060. Energies 15 (14):4950. doi:10.3390/en15144950.
  • Qader, M. R., S. Khan, M. Kamal, M. Usman, and M. Haseeb. 2022. Forecasting carbon emissions due to electricity power generation in Bahrain. Environmental Science and Pollution Research 29 (12):17346–57. doi:10.1007/s11356-021-16960-2.
  • Qiao, W., H. Lu, G. Zhou, M. Azimi, Q. Yang, and W. Tian. 2020. A hybrid algorithm for carbon dioxide emissions forecasting based on improved lion swarm optimizer. Journal of Cleaner Production 244:118612. doi:10.1016/j.jclepro.2019.118612.
  • Quiroz, J. C., Y.-Z. Feng, Z.-Y. Cheng, D. Rezazadegan, P.-K. Chen, Q.-T. Lin, L. Qian, X.-F. Liu, S. Berkovsky, E. Coiera, et al. 2021. Development and validation of a machine learning approach for automated severity assessment of COVID-19 based on clinical and imaging data: retrospective study. JMIR Medical Informatics. 9(2):e24572. doi:10.2196/24572.
  • Rehman, E., M. Ikram, S. Rehman, and M. T. Feng. 2021. Growing green? Sectoral-based prediction of GHG emission in Pakistan: A novel NDGM and doubling time model approach. Environment, Development and Sustainability 23 (8):12169–91. doi:10.1007/s10668-020-01163-5.
  • Rudzki, K., P. Gomulka, and A. T. Hoang. 2022. Optimization model to manage ship fuel consumption and navigation time. Polish Maritime Research 29 (3):141–53. doi:10.2478/pomr-2022-0034.
  • Said, Z., P. Sharma, A. K. Tiwari, V. V. Le, Z. Huang, V. G. Bui, and A. T. Hoang. 2022. Application of novel framework based on ensemble boosted regression trees and Gaussian process regression in modelling thermal performance of small-scale Organic Rankine Cycle (ORC) using hybrid nanofluid. Journal of Cleaner Production 360:132194. doi:10.1016/j.jclepro.2022.132194.
  • Samal, K. K. R., A. K. Panda, K. S. Babu, and S. K. Das. 2021. An improved pollution forecasting model with meteorological impact using multiple imputation and fine-tuning approach. Sustainable Cities and Society 70:102923. doi:10.1016/j.scs.2021.102923.
  • Sánchez-Ccoyllo, O. R., L. D. Martins, R. Y. Ynoue, and M. F. de Andrade. 2007. The impact on tropospheric ozone formation on the implementation of a program for mobile emissions control: A case study in São Paulo, Brazil. Environmental Fluid Mechanics 7 (2):95–119. doi:10.1007/s10652-007-9018-7.
  • Sarkar, M., B. Yegnanarayana, and D. Khemani. 1998. Backpropagation learning algorithms for classification with fuzzy mean square error. Pattern Recognition Letters 19 (1):43–51. doi:10.1016/S0167-8655(97)00151-7.
  • Sechzer, P. H., L. D. Egbert, H. W. Linde, D. Y. Cooper, R. D. Dripps, and H. L. Price. 1960. Effect of CO2 inhalation on arterial pressure, ECG and plasma catecholamines and 17-OH corticosteroids in normal man. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 15:454–58. doi:10.1152/jappl.1960.15.3.454.
  • Shabani, E., B. Hayati, E. Pishbahar, M. A. Ghorbani, and M. Ghahremanzadeh. 2021. A novel approach to predict CO2 emission in the agriculture sector of Iran based on inclusive multiple model. Journal of Cleaner Production 279:123708. doi:10.1016/j.jclepro.2020.123708.
  • Singh, M., and R. Dubey. 2023. Deep learning model based CO2 emissions prediction using vehicle telematics sensors data. IEEE Transactions on Intelligent Vehicles 8 (1):768–77. doi:10.1109/TIV.2021.3102400.
  • Sirohi, R., V. Vivekanand, A. K. Pandey, A. Tarafdar, M. K. Awasthi, A. Shakya, S. H. Kim, S. J. Sim, H. A. Tuan, A. Pandey, et al. 2023. Emerging trends in role and significance of biochar in gaseous biofuels production. Environmental Technology & Innovation 30:103100. doi:10.1016/j.eti.2023.103100.
  • Stelmasiak, Z., J. Larisch, J. Pielecha, and D. Pietras. 2017. Particulate matter emission from dual fuel diesel engine fuelled with natural gas. Polish Maritime Research 24 (2):96–104. doi:10.1515/pomr-2017-0055.
  • Sun, H., D. Gui, B. Yan, Y. Liu, W. Liao, Y. Zhu, C. Lu, and N. Zhao. 2016. Assessing the potential of random forest method for estimating solar radiation using air pollution index. Energy Conversion & Management 119:121–29. doi:10.1016/j.enconman.2016.04.051.
  • Sun, W., and M. Liu. 2016. Prediction and analysis of the three major industries and residential consumption CO2 emissions based on least squares support vector machine in China. Journal of Cleaner Production 122:144–53. doi:10.1016/j.jclepro.2016.02.053.
  • Sun, W., and C. Ren. 2021. Short-term prediction of carbon emissions based on the EEMD-PSOBP model. Environmental Science and Pollution Research 28 (40):56580–94. doi:10.1007/s11356-021-14591-1.
  • Sutthichaimethee, P., and D. Ariyasajjakorn. 2018. Forecast of carbon dioxide emissions from energy consumption in industry sectors in Thailand. Environmental & Climate Technologies 22 (1):107–17. doi:10.2478/rtuect-2018-0007.
  • Suykens, J. A. K., and J. Vandewalle. 1999. LeasT squares support vector machine classifiers. Neural Processing Letters 9 (3):293–300. doi:10.1023/A:1018628609742.
  • Tian, Z.-H., Z.-L. Yang, and R.-X. Cai. 2015. Analysis of Guangdong carbon emissions from energy consumption and the driving factors of its intensity change. Zhongguo Huanjing Kexue/China Environ Sci 35:1885–91.
  • Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal R Stat Soc Ser B 58 (1):267–88. doi:10.1111/j.2517-6161.1996.tb02080.x.
  • TIBSHIRANI, R. 1997. THE lasso method for variable selection in the cox model. Statistics in Medicine 16:385–95. doi:10.1002/(SICI)1097-0258(19970228)16:4<385:AID-SIM380>3.0.CO;2-3.
  • Tiwary, N. K., R. K. Kumar, S. Sarraf, P. Kumar, and N. P. Rana. 2021. Impact assessment of social media usage in B2B marketing: A review of the literature and a way forward. Journal of Business Research 131:121–39. doi:10.1016/j.jbusres.2021.03.028.
  • Tsay, Y.-S., C.-Y. Yeh, Y.-H. Chen, M.-C. Lu, and Y.-C. Lin. 2021. A machine learning-based prediction model of LCCO2 for building envelope renovation in Taiwan. Sustainability 13 (15):8209. doi:10.3390/su13158209.
  • Vakili, S., A. I. Ölçer, A. Schönborn, F. Ballini, and A. T. Hoang. 2022. Energy‐related clean and green framework for shipbuilding community towards zero‐emissions: A strategic analysis from concept to case study. International Journal of Energy Research 46 (14):20624–49. doi:10.1002/er.7649.
  • van Gestel, T., J. A. K. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene, B. de Moor, and J. Vandewalle. 2004. Benchmarking least squares support vector machine classifiers. Machine Learning 54 (1):5–32. doi:10.1023/B:MACH.0000008082.80494.e0.
  • Vapnik, V. 1999. The nature of statistical learning theory. Springer science & business media. doi:10.1007/978-1-4757-3264-1.
  • Vasquez, M. M., C. Hu, D. J. Roe, Z. Chen, M. Halonen, and S. Guerra. 2016. Least absolute shrinkage and selection operator type methods for the identification of serum biomarkers of overweight and obesity: Simulation and application. BMC Medical Research Methodology 16 (1):154. doi:10.1186/s12874-016-0254-8.
  • Velázquez Robles, J. F., E. C. Picó, and S. M. A. Hosseini. 2022. Environmental performance assessment: A comparison and improvement of three existing social housing projects. Cleaner Environmental Systems 5:100077. doi:10.1016/j.cesys.2022.100077.
  • Wang, M., and C. Feng. 2018. Exploring the driving forces of energy-related CO2 emissions in China’s construction industry by utilizing production-theoretical decomposition analysis. Journal of Cleaner Production 202:710–19. doi:10.1016/j.jclepro.2018.08.152.
  • Wang, W., and J. Wang. 2021. Determinants investigation and peak prediction of CO2 emissions in China’s transport sector utilizing bio-inspired extreme learning machine. Environmental Science and Pollution Research 28 (39):55535–53. doi:10.1007/s11356-021-14852-z.
  • Wang, M., Y. Wang, L. Chen, Y. Yang, and X. Li. 2021. Carbon emission of energy consumption of the electric vehicle development scenario. Environmental Science and Pollution Research 28 (31):42401–13. doi:10.1007/s11356-021-13632-z.
  • Wang, Z., Y. Wang, R. Zeng, R. S. Srinivasan, and S. Ahrentzen. 2018. Random Forest based hourly building energy prediction. Energy & Buildings 171:11–25. doi:10.1016/j.enbuild.2018.04.008.
  • Wen, L., and Y. Cao. 2020. A hybrid intelligent predicting model for exploring household CO2 emissions mitigation strategies derived from butterfly optimization algorithm. The Science of the Total Environment 727:138572. doi:10.1016/j.scitotenv.2020.138572.
  • Wen, L., and X. Yuan. 2020. Forecasting CO2 emissions in Chinas commercial department, through BP neural network based on random forest and PSO. The Science of the Total Environment 718:137194. doi:10.1016/j.scitotenv.2020.137194.
  • Wimala, M., R. Yunus, and Z. A. Akasah. 2019. CO2 emissions forecast in precast concrete production. International Journal Sustain Construction Engineering Technologies 10:1–7. doi:10.30880/ijscet.2019.10.02.001.
  • Wu, J.-D., and J.-C. Liu. 2012. A forecasting system for car fuel consumption using a radial basis function neural network. Expert Systems with Applications 39 (2):1883–88. doi:10.1016/j.eswa.2011.07.139.
  • Xie, M., S. Yan, L. Wu, L. Liu, Y. Bai, L. Liu, and Y. Tong. 2021. A novel robust reweighted multivariate grey model for forecasting the greenhouse gas emissions. Journal of Cleaner Production 292:126001. doi:10.1016/j.jclepro.2021.126001.
  • Xu, N., S. Ding, Y. Gong, and J. Bai. 2019. Forecasting Chinese greenhouse gas emissions from energy consumption using a novel grey rolling model. Energy 175:218–27. doi:10.1016/j.energy.2019.03.056.
  • Xu, X., Z. Hu, Q. Su, Z. Xiong, and M. Liu. 2021. Multi-objective learning backtracking search algorithm for economic emission dispatch problem. Soft Computing 25:2433–52. doi:10.1007/s00500-020-05312-w.
  • Xu, C. C., S. F. Yang, L. H. Zhu, X. Cai, Y. S. Sheng, S. W. Zhu, and J. X. Xu. 2014. Regulation of N-acetyl cysteine on gut redox status and major microbiota in weaned piglets1. Journal of Animal Science 92 (4):1504–11. doi:10.2527/jas.2013-6755.
  • Xu, H., J. Zhang, Y. Ouyang, L. Lin, G. Quan, B. Zhao, and J.-Y. Yu. 2015. Effects of simulated acid rain on microbial characteristics in a lateritic red soil. Environmental Science and Pollution Research 22 (22):18260–66. doi:10.1007/s11356-015-5066-6.
  • Yang, X., Z. Jia, Z. Yang, and X. Yuan. 2021. The effects of technological factors on carbon emissions from various sectors in China—A spatial perspective. Journal of Cleaner Production 301:126949. doi:10.1016/j.jclepro.2021.126949.
  • Yang, H., and J. F. O’Connell. 2020. Short-term carbon emissions forecast for aviation industry in Shanghai. Journal of Cleaner Production 275:122734. doi:10.1016/j.jclepro.2020.122734.
  • Ye, H., Q. Ren, X. Hu, T. Lin, L. Shi, G. Zhang, and X. Li. 2018. Modeling energy-related CO2 emissions from office buildings using general regression neural network. Resources Conservation & Recycling 129:168–74. doi:10.1016/j.resconrec.2017.10.020.
  • Ye, M.-Y., X.-D. Wang, and H.-R. Zhang. 2005. Chaotic time series forecasting using online least squares support vector machine regression. Analytical & Bioanalytical Chemistry 381 (4):820–27. doi:10.1007/s00216-004-2988-0.
  • Ye, L., N. Xie, and A. Hu. 2021. A novel time-delay multivariate grey model for impact analysis of CO2 emissions from China’s transportation sectors. Applied Mathematical Modelling 91:493–507. doi:10.1016/j.apm.2020.09.045.
  • Ye, T., N. Zhao, X. Yang, Z. Ouyang, X. Liu, Q. Chen, K. Hu, W. Yue, J. Qi, Z. Li, et al. 2019. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. The Science of the Total Environment 658:936–46. doi:10.1016/j.scitotenv.2018.12.276.
  • Yoon, D., K. Kim, D. Cha, M. Lee, J. Im, D. Cho, and Min, K. 2022. Development of model output statistics based on the least absolute shrinkage and selection operator regression for forecasting next‐day maximum temperature in South Korea. Q J R Meteorol Societies 148:1929–44. doi:10.1002/qj.4286.
  • Zeng, Y., X. Liu A-Stock price fluctuation forecast model based on LSTM. 2018 14th Int. Conf. Semant. Knowl. Grids, IEEE; 2018, p. 261–64. doi:10.1109/SKG.2018.00044.
  • Zhang, K., X. Liu, and J. Yao. 2019. Identifying the driving forces of CO2 emissions of China’s transport sector from temporal and spatial decomposition perspectives. Environmental Science and Pollution Research 26 (17):17383–406. doi:10.1007/s11356-019-05076-3.
  • Zhang, L., Q. Shen, M. Wang, N. Sun, W. Wei, Y. Lei, and Wang, Y. 2019. Driving factors and predictions of CO2 emission in China’s coal chemical industry. Journal of Cleaner Production 210:1131–1140. doi:10.1016/j.jclepro.2018.10.352.
  • Zhelavskaya, I. S., Y. Y. Shprits, and M. Spasojevic. 2018. Reconstruction of Plasma Electron Density from Satellite Measurements via Artificial Neural Networks. Mach Learn Tech Sp Weather Elsevier: 301–27. doi:10.1016/B978-0-12-811788-0.00012-3.
  • Zhou, J., X. Xu, W. Li, F. Guang, X. Yu, and B. Jin. 2019. Forecasting CO 2 emissions in China’s construction industry based on the weighted adaboost-ENN model and scenario analysis. Journal of Energy 2019:1–12. doi:10.1155/2019/8275491.
  • Zhu, B., W. Zhou, S. Hu, Q. Li, C. Griffy-Brown, and Y. Jin. 2010. CO2 emissions and reduction potential in China’s chemical industry. Energy 35 (12):4663–70. doi:10.1016/j.energy.2010.09.038.
  • Zubaidi, S. L., S. Ortega-Martorell, P. Kot, R. M. Alkhaddar, M. Abdellatif, S. K. Gharghan, M. S. Ahmed, and K. Hashim. 2020. A method for predicting long-term municipal water demands under climate change. Water Resources Management 34 (3):1265–79. doi:10.1007/s11269-020-02500-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.