266
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review on the applications of machine learning and deep learning in agriculture section for the production of crop biomass raw materials

&
Pages 9178-9201 | Received 13 Mar 2023, Accepted 14 Jun 2023, Published online: 09 Jul 2023

References

  • Abioye, E. A., O. Hensel, T. J. Esau, O. Elijah, M. S. Z. Abidin, A. S. Ayobami, O. Yerima, and A. Nasirahmadi. 2022. Precision irrigation management using machine learning and digital farming solutions. AgriEngineering 4 (1):70–103. doi:10.3390/agriengineering4010006.
  • Adnan, R. M., O. Kisi, R. R. Mostafa, A. N. Ahmed, and A. El-Shafie. 2022. The potential of a novel support vector machine trained with modified mayfly optimization algorithm for streamflow prediction. Hydrological Sciences Journal 67 (2):161–74. CrossRef. doi:10.1080/02626667.2021.2012182.
  • Adnan, R. M., R. R. Mostafa, A. Elbeltagi, Z. M. Yaseen, S. Shahid, and O. Kisi. 2022. Development of new machine learning model for streamflow prediction: Case studies in Pakistan. Stochastic Environmental Research and Risk Assessment: Research Journal 36 (4):999–1033. doi:10.1007/s00477-021-02111-z.
  • Adnan, R. M., R. R. Mostafa, A. R. M. T. Islam, O. Kisi, A. Kuriqi, and S. Heddam. 2021. Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms. Computers and Electronics in Agriculture 191:106541. doi:10.1016/j.compag.2021.106541.
  • Ahmet Coşgun, M. E. G., R. Yıldırım, and R. Yıldırım. 2021. Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning. Renewable Energy 163:1299–317. ISSN 0960-1481. doi:10.1016/j.renene.2020.09.034.
  • Ajjolli Nagaraja, A., P. Charton, X. F. Cadet, N. Fontaine, M. Delsaut, B. Wiltschi, A. Voit, B. Offmann, C. Damour, B. Grondin-Perez, et al. 2020. A machine learning approach for efficient selection of enzyme concentrations and its application for flux optimization. Catalysts 10 (3):291. doi:10.3390/catal10030291.
  • Ali, I., F. Cawkwell, E. Dwyer, and S. Green. July 2017. Modeling managed grassland biomass estimation by using multitemporal remote sensing data—a machine learning approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10(7):3254–64. doi: 10.1109/JSTARS.2016.2561618.
  • Alley, E. C., G. Khimulya, S. Biswas, M. AlQuraishi, and G. M. Church. 2019. Unified rational protein engineering with sequence-based deep representation learning. Nature Methods 16 (12):1315–22. doi:10.1038/s41592-019-0598-1.
  • Alves Oliveira, R., R. Näsi, O. Niemeläinen, L. Nyholm, K. Alhonoja, J. Kaivosoja, L. Jauhiainen, N. Viljanen, S. Nezami, L. Markelin, et al. 2020. Eija Honkavaara, Machine learning estimators for the quantity and quality of grass swards used for silage production using drone-based imaging spectrometry and photogrammetry. Remote Sensing of Environment 246:111830. ISSN 0034-4257. doi:10.1016/j.rse.2020.111830.
  • Amin Amani, M., and F. Marinello. February 2022. A deep learning-based model to reduce costs and increase productivity in the case of small datasets: a case study in cotton cultivation. Agriculture, MDPI 12(2):1–13. doi: 10.3390/agriculture12020267.
  • Amon, A., B. Amon, V. Kryvoruchko, A. Machmüller, K. Hopfner-Sixt, V. Bodiroza, R. Hrbek, J. Friedel, E. Pötsch, H. Wagentristl, et al. 2007. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource Technology 98 (17):3204–12. doi:10.1016/j.biortech.2006.07.007.
  • Berger, C. et al., “Annual grass biomass mapping with Landsat-8 and Sentinel-2 data over Kruger National Park, South Africa,” IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 4323–26, doi: 10.1109/IGARSS39084.2020.9324413.
  • Bin, L., F. Bart, Z. Yining, A. Zoe, L. Qiang, B. Henry, L. Man, S. Y. Dai, and J. S. Yuan. 2022. In: Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity. United Kingdom: N. Web. 10.1038/s41467-021-27665-y.
  • Buxbaum, N., J. H. Lieth, and M. Earles. 2022 Apr 13. Non-destructive plant biomass monitoring with high spatio-temporal resolution via proximal RGB-D imagery and end-to-end deep learning. Frontiers in Plant Science 13:758818. PMID: 35498682 PMCID: PMC9043900. doi:10.3389/fpls.2022.758818.
  • Canata, T. F., M. C. F. Wei, L. F. Maldaner, and J. P. Molin. 2021. Sugarcane yield mapping using high-resolution imagery data and machine learning technique. Remote Sensing 13 (2):232. doi:10.3390/rs13020232.
  • Castro, W., J. Marcato Junior, C. Polidoro, L. P. Osco, W. Gonçalves, L. Rodrigues, M. Santos, L. Jank, S. Barrios, C. Valle, et al. 2020. Deep learning applied to phenotyping of biomass in forages with UAV-Based RGB Imagery. Sensors 20 (17):4802. doi:10.3390/s20174802.
  • Chen, X., Y. Huang, C. Nie, S. Zhang, G. Wang, S. Chen, and Z. Chen. 2022. A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms. Scientific Data 9 (1):427. https://doi.org/10.1038/s41597-022-01520-1.
  • Chen, J., M. Piva, and T. Labuza. 1984. Evaluation of water binding capacity (WBC) of food fiber sources. Journal of Food Science 49 (1):59–63. doi:10.1111/j.1365-2621.1984.tb13668.x.
  • Ching, P. M. L., A. P. Mayol, J. L. G. S. Juan, R. H. Y. So, C. L. Sy, E. Mandia, A. T. Ubando, and A. B. Culaba. 2022. Early prediction of Spirulina platensis biomass yield for biofuel production using machine learning. Clean Technologies and Environmental Policy 24 (7):2283–93. doi:10.1007/s10098-022-02321-1.
  • Concu, R., M. N. D. S. Cordeiro, C. R. Munteanu, and H. González-Díaz. 2019. PTML model of enzyme subclasses for mining the proteome of biofuel producing microorganisms. Journal of Proteome Research 18 (7):2735–46. doi:10.1021/acs.jproteome.8b00949.
  • Concu, R., M. Cordeiro, D. S. Natália, and C. R. Munteanu. 2019. PTML model of enzyme subclasses for mining the proteome of biofuel producing microorganisms. Journal of Proteome Research 18 (7):2735–46. doi:10.1021/acs.jproteome.8b00949.
  • Coopersmith, E. J., B. S. Minsker, C. E. Wenzel, and B. J. Gilmore. 2014. Machine learning assessments of soil drying for agricultural planning. Computers and Electronics in Agriculture 104:93–104. doi:10.1016/j.compag.2014.04.004.
  • Coppin, A., J.-S. Varre, L. Lienard, D. Dauvillee, Y. Guerardel, M.-O. Soyer-Gobillard, A. Buleon, S. Ball, and S. Tomavo. 2005. Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. Journal of Molecular Evolution 60 (2):257–67. doi:10.1007/s00239-004-0185-6.
  • Cosgun, A., M. Günay, and R. Yildirim. 2021. Analysis of lipid production from Yarrowia lipolytica for renewable fuel production by machine learning https: //authors.elsevier.com/a/1eDak3iH4EV3s. Fuel 315:122817. doi:10.1016/j.fuel.2021.122817.
  • Cruz, R. C., P. Reis Costa, S. Vinga, L. Krippahl, and M. B. Lopes. 2021. A review of recent machine learning advances for forecasting harmful algal blooms and shellfish contamination. Journal of Marine Science and Engineering 9 (3):283. doi:10.3390/jmse9030283.
  • Dacal-Nieto, A.; A. Formella; P. Carrión; E. Vazquez-Fernandez; M. Fernández-Delgado Common scab detection on potatoes using an infrared hyperspectral imaging system. In International Conference on Image Analysis and Processing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 303–12.
  • Dalaka, A., B. Kompare, M. Robnik-Šikonja, and S. P. Sgardelis. 2000. Sgardelis Stefanos Modelling the effects of environmental conditions on apparent photosynthesis of Stipa bromoides by machine learning tools. Ecological Modelling 129 (2–3):245–57. doi:10.1016/S0304-3800(00)00237-4.
  • Daniels, E. T. and B. D. McPheron, “A machine learning approach to classifying algae concentrations,” 2017 IEEE MIT Undergraduate Research Technology Conference (URTC), 2017, pp. 1–4, doi: 10.1109/URTC.2017.8284201.
  • Das, K., N. Khiripet, P. Chattanrassamee, C. Kijkullert and V. Veerachit, “Crop evapotranspiration estimates for sugarcane based on remote sensing and land surface model in Thailand,” IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 5175–78, doi: 10.1109/IGARSS39084.2020.9323195.
  • Del Rio-Chanona, E. A., J. L. Wagner, H. Ali, F. Fiorelli, D. Zhang, and K. Hellgardt. 2018. Deep learning based surrogate modeling and optimization for microalgal biofuel production and photobioreactor design. AIChE Journal 65 (3):915–23. doi:10.1002/aic.16473.
  • Dongkun Li, D. L. 0000. Application of artificial intelligence and machine learning based on big data analysis in sustainable agriculture. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 71 (9):956–69. doi:10.1080/09064710.2021.1965650.
  • Doshi, Z.; S. Nadkarni; R. Agrawal; N. Shah AgroConsultant: intelligent crop recommendation system using machine learning algorithms. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.
  • Dutta, R., C. Li, D. Smith, A. Das, and J. Aryal. 2015. Big data architecture for environmental analytics. In International symposium on environmental software systems, 578–88. Berlin/Heidelberg, Germany: Springer. doi:10.1007/978-3-319-15994-2_59.
  • Erfanmanesh, A., B. Beikzadeh, F. Aziz Mohseni, D. Nikaein, and T. Mohajerfar. 2019. Ulcerative dermatitis in barramundi due to coinfection with Streptococcus iniae and Shewanella algae. Diseases of Aquatic Organisms 134 (2):89–97. https://doi.org/10.3354/dao03363.
  • Eyed Hashem Mousavi-Avval, S. Rafiee, M. Sharifi, S. Hosseinpour, A. Shah, and S. H. Mousavi-Avval. 2017. Combined application oF life cycle assessment and adaptive Neuro-Fuzzy Inference System for modeling energy and environmental emissions of oilseed production. Renewable and Sustainable Energy Reviews 78:807–20. ISSN 1364-0321. https://doi.org/10.1016/j.rser.2017.05.002.
  • Fang, F., B. Ni, W. Li, G. Sheng, and H. Yu. 2011. A simulation-based integrated approach to optimize the biological nutrient removal process in a full-scale wastewater treatment plant. Journal of chemical engineering 174 (2–3):635–43. https://doi.org/10.1016/j.cej.2011.09.079.
  • Feehan, R., M. W. Franklin, and J. S. G. Slusky. 2021. Machine learning differentiates enzymatic and non-enzymatic metals in proteins. Nature Communications 12 (1):3712. doi:10.1038/s41467-021-24070-3.
  • Fu, P., K. Meacham-Hensold, K. Guan, and C. J. Bernacchi. 2019. Hyperspectral leaf reflectance as proxy for photosynthetic capacities: an ensemble approach based on multiple machine learning algorithms. Frontiers in Plant Science 10:730. doi:10.3389/fpls.2019.00730.
  • Gamble, C., D. Bryant, D. Carrieri, E. Bixby, J. Dang, J. Marshall, D. Doughty, L. Colwell, M. Berndl, and J. Roberts. 2021, 08 06. Michael Frumkin machine learning optimization of photosynthetic microbe cultivation and recombinant protein production. bioRxiv [Internet]:453272. doi:10.1101/2021.08.06.453272.
  • Grinblat, G. L., L. C. Uzal, M. G. Larese, and P. M. Granitto. 2016. Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture 127:418–24. doi:10.1016/j.compag.2016.07.003.
  • Han, X., W. Ning, M. Xiaoqiang, X. Wang, and K. Zhou. 2020. Improving protein solubility and activity by introducing small peptide tags designed with machine learning models. Metabolic Engineering Communications 11 (e00138):e00138. ISSN 2214 0301. doi:10.1016/j.mec.2020.e00138.
  • Han, Z., J. Sun, A. Lv, Y. Sung, H. Shi, X. Hu, and K. Xing. 2017. Isolation, identification and characterization of Shewanella algae from reared tongue sole, Cynoglossus semilaevis Günther. Aquaculture 468:356–62. doi:10.1016/j.aquaculture.2016.10.038.
  • Häse, F., L. M. Roch, P. Friederich, and A. Aspuru-Guzik. 2020. Designing and understanding light-harvesting devices with machine learning. Nature Communications 11 (1):4587. https://doi.org/10.1038/s41467-020-17995-8.
  • Heckmann, D., U. Schlüter, and A. P. M. Weber. Machine learning techniques for predicting crop photosynthetic capacity from leaf reflectance spectra. Molecular Plant 10(6):2017 Jun 5 878–90. doi:10.1016/j.molp.2017.04.009.
  • He, Y., H. Zeng, Y. Fan, S. Ji, and J. Wu. 2019. Application of deep learning in integrated pest management: a real-time system for detection and diagnosis of oilseed rape pests. Mobile Information Systems 2019 (1):1–14. doi:10.1155/2019/4570808.
  • Huang, Z. Q., Y. C. Chen, and C. Y. Wen. 2020. Real-time weather monitoring and prediction using city buses and machine learning. Sensors (Switzerland) 20 (18):1–21. doi:10.3390/s20185173.
  • Huang, P., S. K. S. Chu, H. N. Frizzo, M. P. Connolly, R. W. Caster, and J. B. Siegel. 2020. Evaluating protein engineering thermostability prediction tools using an independently generated dataset. ACS Omega 5 (12):6487–93. doi:10.1021/acsomega.9b04105.
  • Huntington, T., X. Cui, U. Mishra, and C. D. Scown. 2020. Machine learning to predict biomass sorghum yields under future climate scenarios. Biofuel, Bioproduct, Biorefining 14 (3): 566–577. doi:10.1002/bbb.2087.
  • Ikram, R. M. A., H.-L. Dai, M. M. Chargari, M. Al-Bahrani, and M. Mamlooki. 2022. Prediction of the FRP reinforced concrete beam shear capacity by using ELM-CRFOA. Measurement 205:112230. CrossRef. doi:10.1016/j.measurement.2022.112230.
  • Ikram, R. M. A., H.-L. Dai, A. A. Ewees, J. Shiri, O. Kisi, and M. Zounemat-Kermani. 2022. Application of improved version of multi verse optimizer algorithm for modeling solar radiation. Energy Reports 8:12063–80. CrossRef. doi:10.1016/j.egyr.2022.09.015.
  • Ikram, R. M. A., A. A. Ewees, K. S. Parmar, Z. M. Yaseen, S. Shahid, and O. Kisi. 2022. The viability of extended marine predators algorithm- based artificial neural networks for streamflow prediction. Applied Soft Computing 131:109739. CrossRef. doi:10.1016/j.asoc.2022.109739.
  • Jain, A., B. Jyoti Bora, R. Kumar, P. Sharma, B. Deepanraj, K. Irshad, and C. Ravikiran. 2023. Application of hybrid Taguchi L16 and desirability for model prediction and optimization in assessment of the performance of a novel Water Hyacinth biodiesel run diesel engine. Fuel 339:127377. ISSN 0016-2361. doi:10.1016/j.fuel.2022.127377.
  • Jin, B., Q. Hengnian, L. Jia, Q. Tang, L. Gao, L. Zhenan, and G. Zhao. 2022. Determination of viability and vigor of naturally-aged rice seeds using hyperspectral imaging with machine learning. Infrared Physics & Technology 122 (104097):104097. ISSN 1350-4495. doi:10.1016/j.infrared.2022.104097.
  • Johann, A. L., A. G. de Araújo, H. C. Delalibera, and A. R. Hirakawa. 2016. Soil moisture modeling based on stochastic behavior of forces on a no-till chisel opener. Computers and Electronics in Agriculture 121:420–28. doi:10.1016/j.compag.2015.12.020.
  • Kaneko, T., K. Nomura, D. Yasutake, T. Iwao, T. Okayasu, Y. Ozaki, M. Mori, T. Hirota, and M. Kitano. 2022. A canopy photosynthesis model based on a highly generalizable artificial neural network incorporated with a mechanistic understanding of single-leaf photosynthesis. Agricultural and Forest Meteorology 323:323 pp. 109036. doi:10.1016/j.agrformet.2022.109036.
  • Kasampalis, D. A., T. K. Alexandridis, C. Deva, C. Andrew, D. Moshou, and G. Zalidis. 2018. Contribution of remote sensing on crop models: a review. Journal of Imaging 4 (4):52. doi:10.3390/jimaging4040052.
  • Kasampalis, D. S., P. Tsouvaltzis, K. Ntouros, A. Gertsis, D. Moshou, and A. S. Siomos. 2021. Rapid nondestructive postharvest potato freshness and cultivar discrimination assessment. Applied Science 11 (6):2630. doi:10.3390/app11062630.
  • Khruschev, S. S., T. Y. Plyusnina, T. K. Antal, S. I. Pogosyan, G. Y. Riznichenko, and A. B. Rubin. 2022. Machine learning methods for assessing photosynthetic activity: Environmental monitoring applications. Biophysical Reviews 14 (4):821–42. doi:10.1007/s12551-022-00982-2.
  • Kircher, S., and P. Schopfer. 2012. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109 (28):11217–21. doi:10.1073/pnas.1203746109.
  • Kjær, A., G. Nielsen, S. Stærke, M. R. Clausen, M. Edelenbos, and B. Jørgensen. 2016. Prediction of starch, soluble sugars and amino acids in potatoes (Solanum tuberosum L.) using hyperspectral imaging, dielectric and LF-NMR methodologies. Potato Research 59 (4):357–74. doi:10.1007/s11540-017-9335-2.
  • Kmar, A., O. Rajendra, Swapneel Chakraborty intelligent crop recommendation system using ml http://203.201.63.46:8080/jspui/bitstream/123456789/6116/1/PR3111.pdf
  • Kramer, D., J. Chen, E. Ostendorf, X. Lei, J. Cruz, and J. Brodersen. 2016. Methods for estimating photosynthetic characteristics in plant canopies and systems and apparatus related thereto. Board of trustees of Michigan State University.
  • Kumar Saini, D., A. Rai, A. Devi, S. Pabbi, D. Chhabra, J.-S. Chang, and P. Shukla. 2021. A multi-objective hybrid machine learning approach-based optimization for enhanced biomass and bioactive phycobiliproteins production in Nostoc sp. CCC-403. Bioresource Technology 329:124908. ISSN 0960-8524. doi:10.1016/j.biortech.2021.124908.
  • Kumar, V., A. Sharma, R. Kumar, R. Bhardwaj, A. Kumar Thukral, and J. Rodrigo-Comino. 2018. Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Human and Ecological Risk Assessment: An International Journal 26 (1):1–16. doi:10.1080/10807039.2018.1497946.
  • Kundu, N., G. Rani, and V. Singh Dhaka. 2022. Seeds classification and quality testing using deep learning and YOLO v5. In Proceedings of the International Conference on Data Science, Machine Learning and Artificial Intelligence (DSMLAI ‘21’). Association for Computing Machinery, New York, NY, USA, 153–60. doi:10.1145/3484824.3484913
  • Lee, K. J., S. T. Yun, S. Yu, K. H. Kim, J. H. Lee, and S. H. Lee. 2019. The combined use of self-organizing map technique and fuzzy c-means clustering to evaluate urban groundwater quality in Seoul metropolitan city. Journal of Hydrology 569:685–97. doi:10.1016/j.jhydrol.2018.12.031.
  • Lee, E. K., W.-J. Zhang, X. Zhang, P. R. Adler, S. Lin, B. J. Feingold, H. A. Khwaja, and X. X. Romeiko. 2020. Projecting life-cycle environmental impacts of corn production in the U.S. Midwest under future climate scenarios using a machine learning approach. The Science of the Total Environment 714:136697. doi:10.1016/j.scitotenv.2020.136697.
  • Lingle, S. E. 1999. Sugarcane. In Crop Yield, ed. D. L. Smith and C. Hamel, 287–310. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-58554-8_9
  • Liu, J.-L., X. Cheng, G.-H. Xie, W.-B. Zhu and S.-J. Xiong, “Variation in corn stover yield and fuel quality with harvest time,” 2009 Asia-Pacific Power and Energy Engineering Conference, 2009, pp. 1–6, doi: 10.1109/APPEEC.2009.4918959.
  • Liu, B., H. Sträuber, J. Saraiva, H. Harms, S. G. Silva, J. C. Kasmanas, S. Kleinsteuber, and U. Nunes da Rocha. 2022. Machine learning-assisted identification of bioindicators predicts medium-chain carboxylate production performance of an anaerobic mixed culture. Microbiome 10 (1):48. doi:10.1186/s40168-021-01219-2.
  • Liu, P., J. Wang, A. Sangaiah, Y. Xie, and X. Yin. 2019. Analysis and prediction of water quality using LSTM deep neural networks in IoT environment. Sustainability 11 (7):072058. doi:10.3390/su11072058.
  • Long, B., B. Fischer, Y. Zeng, Z. Amerigian, Q. Li, H. Bryant, M. Li, S. Y. Dai, and J. S. Yuan. 2022. Machine learning-informed and synthetic biology enabled semi-continuous algal cultivation to unleash renewable fuel productivity. Nature Communications 13 (1):541. doi:10.1038/s41467-021-27665-y.
  • Ly, Q. V., X. C. Nguyen, N. C. Le, T. D. Truong, T. T. Hoang, T. J. Park, T. Maqbool, J. Pyo, K. H. Cho, K. S. Lee, et al. 2021. Application of machine learning for eutrophication analysis and algal bloom prediction in an urban river: A 10-year study of the Han River. The Science of the Total Environment 797:149040. doi:10.1016/j.scitotenv.2021.149040.
  • Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects.
  • Maione, C., B. L. Batista, A. D. Campiglia, F. Barbosa, and R. M. Barbosa. 2016. Classification of geographic origin of rice by data mining and inductively coupled plasma mass spectrometry. Computers and Electronics in Agriculture 121:101–07. doi:10.1016/j.compag.2015.11.009.
  • Manatura, K., B. Chalermsinsuwan, N. Kaewtrakulchai, E. E. Kwon, and W.-H. Chen. 2023. Wei-Hsin Chen, Machine learning and statistical analysis for biomass torrefaction: A review. Bioresource Technology 369:128504. ISSN 0960-8524. https://doi.org/10.1016/j.biortech.2022.128504.
  • Medeiros, A. D., L. J. D. Silva, J. P. O. Ribeiro, K. C. Ferreira, J. T. F. Rosas, A. A. Santos, and C. B. D. Silva. Machine learning for seed quality classification: an advanced approach using merger data from FT-NIR Spectroscopy and X-ray Imaging. Sensors (Basel) 20(15):2020 Aug 3 4319. doi:10.3390/s20154319.
  • Mohammadi, K., S. Shamshirband, S. Motamedi, D. Petkovi´c, R. Hashim, and M. Gocic. 2015. Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture 117:214–25. doi:10.1016/j.compag.2015.08.008.
  • Mohammed, M., R. Kolapalli, N. Golla, and S. S. Maturi. 2020. Prediction of rainfall using machine learning techniques. International Journal of Scientific & Technology Research 9 (1):3236–40. doi:10.36227/techrxiv.14398304.
  • Moore Bethany, M., P. Wang, P. Fan, B. Leong, C. A. Schenck, P. Lloyd, M. D. Lehti-Shiu, R. L. Last, E. Pichersky, and S.-H. Shiu. 2019. Robust predictions of specialized metabolism genes through machine learning, 2019. Proceedings of the National Academy of Sciences 116 (6):2344–53. dio1817074116. doi:10.1073/pnas.1817074116.
  • Morellos, A., X.-E. Pantazi, D. Moshou, T. Alexandridis, R. Whetton, G. Tziotzios, J. Wiebensohn, R. Bill, and A. M. Mouazen. 2016. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Engineering 152:104–16. doi:10.1016/j.biosystemseng.2016.04.018.
  • Moshou, D., X.-E. Pantazi, D. Kateris, and I. Gravalos. 2014. Water stress detection based on optical multisensory fusion with a least squares support vector machine classifier. Biosystems Engineering 117:15–22. doi:10.1016/j.biosystemseng.2013.07.008.
  • Motes, J., and J. Greig. 1970. Specific gravity, potato chip color and tuber mineral content as affected by soil moisture and harvest dates. American Potato Journal 47 (11):413. doi:10.1007/BF02900379.
  • Musa, E., F. Doherty, and B. R. Goldsmith. 2022. Accelerating the structure search of catalysts with machine learning. Current Opinion in Chemical Engineering 35 (100771):100771–3398. doi:10.1016/j.coche.2021.100771.
  • Nag, A., A. Gerritsen, C. Doeppke, and A. E. Harman-Ware. 2021 Apr 15. Machine learning-based classification of lignocellulosic biomass from pyrolysis-molecular beam mass spectrometry data. International Journal of Molecular Sciences. 22(8):4107. PMID: 33921121; PMCID: PMC8071563. doi:10.3390/ijms22084107
  • Nahvi, B., J. Habibi, K. Mohammadi, S. Shamshirband, and O. S. Al Razgan. 2016. Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature. Computers and Electronics in Agriculture 124:150–60. doi:10.1016/j.compag.2016.03.025.
  • Namias, R., L. Uzal, G. Grinblat & M. Larese & P. Granitto & E. N. Morandi & J. Bianchi (2018).
  • Narayanan, B., M. Saadeldin, P. Albert, K. McGuinness, and N. B. Mac. 2021. Extracting pasture phenotype and biomass percentages using weakly supervised multitarget deep learning on a small dataset. arXiv preprint arXiv:2101.03198.
  • Ning, H., R. Li, and T. Zhou. 2022. Machine learning for microalgae detection and utilization. Frontiers in Marine Science 9:947394. doi:10.3389/fmars.2022.947394.
  • Ogawa, T. 1993. Photosynthetic responses to the environment. In American Society of Plant Physiologist Series, ed. H. Yamamoto and C. Smith, 113–25, Rockville.
  • Otálora, P., J. L. Guzmán, F. G. Acién, M. Berenguel, and A. Reul. 2021. Microalgae classification based on machine learning techniques. Algal Research 55:102256. ISSN 2211-9264. doi:10.1016/j.algal.2021.102256.
  • Panda, B. S., P. V. Lasyasri, D. Maneesha, P. Goutham, K. Suresh, and C. Pranavsankar. 2020. A novel approach for weather forecasting using machine learning techniques. International Journal of Computer Science & Communication 11: 25–30.
  • Pantazi, X.-E., D. Moshou, T. K. Alexandridis, R. L. Whetton, and A. M. Mouazen. 2016. Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture 121:57–65. doi:10.1016/j.compag.2015.11.018.
  • Pantazi, X.-E., D. Moshou, and C. Bravo. 2016. Active learning system for weed species recognition based on hyperspectral sensing. Biosystems Engineering 146:193–202. doi:10.1016/j.biosystemseng.2016.01.014.
  • Parashar, A., “IoT based automated weather report generation and prediction using machine learning,” 2019 2nd Int. Conf. Intell. Commun. Comput. Tech. ICCT 2019, pp. 339–44, 2019, doi: 10.1109/ICCT46177.2019.8968782.
  • Parmley, K. A., R. H. Higgins, B. Ganapathysubramanian, S. Sarkar, and A. K. Singh. 2019. Machine learning approach for prescriptive plant breeding. Scientific Reports 9 (1):17132. https://doi.org/10.1038/s41598-019-53451-4.
  • Patil, A., and P. Deka. 2016. An extreme learning machine approach for modeling evapotranspiration using extrinsic inputs. Computers and Electronics in Agriculture 121:385–92. doi:10.1016/j.compag.2016.01.016.
  • Paudel, D., H. Boogaard, A. de Wit, S. Janssen, S. Osinga, C. Pylianidis, and I. N. Athanasiadis. 2021. Machine learning for large-scale crop yield forecasting. Agricultural Systems 187 (103016):103016. ISSN 0308-521X. https://doi.org/10.1016/j.agsy.2020.103016.
  • Poudyal, C., L. Fideles Costa, H. Sandhu, and Y. Ampatzidis. 2022. Sugarcane yield prediction and genotype selection using unmanned aerial vehicle-based hyperspectral imaging and machine learning. Agronomy Journal 114 (4): 2320–2333.
  • Poudyal, C., H. Sandhu, Y. Ampatzidis, D. Calvin Odero, O. Coto Arbelo, R. H. Cherry, and L. F. Costa. 2023. Lucas Fideles Costa, Prediction of morpho-physiological traits in sugarcane using aerial imagery and machine learning. Smart Agricultural Technology 3 (100104):100104–3755. doi:10.1016/j.atech.2022.100104.
  • Qu, Y., A. Clausen and B. N. Jørgensen, “Net photosynthesis prediction by deep learning for commercial greenhouse production,” 2021 IEEE 25th International Conference on Intelligent Engineering Systems (INES), 2021, pp. 000139–44, doi: 10.1109/INES52918.2021.9512919.
  • Rady, A. M., D. E. Guyer, W. Kirk, and I. R. Donis-González. 2014. The potential use of visible/near infrared spectroscopy and hyperspectral imaging to predict processing-related constituents of potatoes. Journal of Food Engineering 135:11–25. doi:10.1016/j.jfoodeng.2014.02.021.
  • Rady, A. M., D. E. Guyer, and N. J. Watson. 2021. Near-infrared spectroscopy and hyperspectral imaging for sugar content evaluation in potatoes over multiple growing seasons. Food Analytical Methods 14 (3):581–95. doi:10.1007/s12161-020-01886-1.
  • Rangel, R., Morales-Rosales, R. Hector, Roman-Garay, M. Rosales, M. Luis, R. Rojo, M. A. Garay, M. Peralta-Peñuñuri, and M. Báez. 2022. Analysis of statistical and artificial intelligence algorithms for real-time speed estimation based on vehicle detection with YOLO. Applied Sciences 12. 2907 (6):2907. doi:10.3390/app12062907.
  • Revathy, R., and S. Balamurali. 5 April 2022. Developing an efficient irrigation scheduling system using hybrid machine learning algorithm to enhance the sugarcane crop productivity. PREPRINT (Version 1) available at Research Square. doi:10.21203/rs.3.rs-1504824/v1
  • Rex, P., K. R. Mohammed Ismail, N. Meenakshisundaram, P. Barmavatu, and S. Bharadwaj AVSL. 2023. AgriculturaL biomass waste to biochar: a review on biochar applications using machine learning approach and circular economy. ChemEngineering 7 (3):50. doi:10.3390/chemengineering7030050.
  • Robinson, S. L., M. D. Smith, J. E. Richman, K. G. Aukema, and L. P. Wackett. 2020. Machine learning-based prediction of activity and substrate specificity for OleA enzymes in the thiolase superfamily. Synthetic Biology 5 (1):ysaa004. doi:10.1093/synbio/ysaa004.
  • Rocha, M. G., F. M. Barros, S. R. Oliveira, and L. R. Amaral. 2019. Biometric characteristics and canopy reflectance association for early-stage sugarcane biomass prediction. Scientia Agricola.
  • Rodríguez-Rángel, H., D. M. Arias, L. A. Morales-Rosales, V. Gonzalez-Huitron, M. Valenzuela Partida, and J. García. 2022. Machine learning methods modeling carbohydrate-enriched cyanobacteria biomass production in wastewater treatment systems. Energies 15 (7):2500. doi:10.3390/en15072500.
  • Roy Choudhury, M., S. Das, J. Christopher, A. Apan, S. Chapman, N. W. Menzies, and Y. P. Dang. 2021. Improving biomass and grain yield prediction of wheat genotypes on sodic soil using integrated high-resolution multispectral, hyperspectral, 3D point cloud, and machine learning techniques. Remote Sensing 13 (17):3482. doi:10.3390/rs13173482.
  • Sagar, G., M. Umakant, S. Corinne, and Z. Yao. 2020. Sorghum biomass production in the continental United States and its potential impacts on soil organic carbon and nitrous oxide emissions. Global Change Biology Bioenergy 12 (10):878–90. doi:10.1111/gcbb.12736.
  • Said, Z., P. Sharma, B. J. Bora, V. N. Nguyen, T. Anh Em Bui, D. Tuyen Nguyen, X. Thanh Dinh, and X. Phuong Nguyen. 2023. Modeling-optimization of performance and emission characteristics of dual-fuel engine powered with pilot diesel and agricultural-food waste-derived biogas. International Journal of Hydrogen Energy 48 (18):6761–77. ISSN 0360-3199. doi:10.1016/j.ijhydene.2022.07.150.
  • Salman, A. G., B. Kanigoro, and Y. Heryadi. 2016. “Weather forecasting using deep learning techniques,” ICACSIS 2015 - 2015 Int. Conference Advance Computer Science Information System Proceedings 281–85. doi:10.1109/ICACSIS.2015.7415154.
  • Schmid-Staiger, U., M. Stier, and Y. Yeh. 2021. Machine learning for algae cultivation. Fraunhofer Institute for Interfacial Engineering and Biotechnology Publication.
  • Shao, Y., Y. Liu, G. Xuan, Y. Wang, Z. Gao, Z. Hu, X. Han, C. Gao, and K. Wang. 2020. Application of hyperspectral imaging for spatial prediction of soluble solid content in sweet potato. RSC Advances 10 (55):33148–54. doi:10.1039/C9RA10630H.
  • Sharma, V., A. Kalam Hossain, A. Ahmed, and A. Rezk. 2022. Study on using graphene and graphite nanoparticles as fuel additives in waste cooking oil biodiesel. Fuel 328 (125270):ISSN 0016–2361. doi:10.1016/j.fuel.2022.125270.
  • Sharma, P., Z. Said, A. Kumar, S. Nižetić, A. Pandey, A. Tuan Hoang, Z. Huang, A. Afzal, C. Li, and A. T. Le. 2022. Recent advances in machine learning research for nanofluid-based heat transfer in renewable energy system. Energy & Fuels 36 (13):6626–58. doi:10.1021/acs.energyfuels.2c01006.
  • Sharma, P., M. Sivaramakrishnaiah, B. Deepanraj, R. Saravanan, and M. Venkateswar Reddy. 2022. A novel optimization approach for biohydrogen production using algal biomass. International Journal of Hydrogen Energy ISSN 0360-3199. doi: 10.1016/j.ijhydene.2022.09.274.
  • Singels, A., P. Jackson, and G. Inman-Bamber. 2021. Chapter 21. In Sugarcane, Victor O. Sadras, Daniel F. Calderini, ed. In: Crop physiology case histories for major crops. Academic Press 674–713. ISBN 9780128191941. doi:10.1016/B978-0-12-819194-1.00021-9
  • Singh Chhokar, R., R. Kumar Sharma, M. Kumar Gathala, and A. Kumar Pundir. 2014. Effects of crop establishment techniques on weeds and rice yield. Crop Protection 64:7–12. ISSN 0261-2194. doi:10.1016/j.cropro.2014.05.016.
  • Singh, S. and Sannihit, “Sustainable and smart agriculture: a holistic approach,” 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pp. 543–47, doi: 10.1109/ICACITE53722.2022.9823634.
  • Sivabalan, K. et al 2021 Journal of Physics: Conference Series, Volume 1831, International Conference on Robotics and Artificial Intelligence doi:10.1088/1742-6596/1831/1/012033
  • Song, Y., L. Pei, G. Chen, M. Lan, B. Yan, L. Hongji, and T. Zhou. 2023. Recent advancements in strategies to improve anaerobic digestion of perennial energy grasses for enhanced methane production. Science of the Total Environment 861 (160552):160552–9697. doi:10.1016/j.scitotenv.2022.160552.
  • Sonoki, T., K. Takahashi, H. Sugita, M. Hatamura, Y. Azuma, T. Sato, S. Suzuki, N. Kamimura, and E. Masai. 2018. Glucose-Free cis,cis-Muconic acid production via new metabolic designs corresponding to the heterogeneity of lignin. ACS Sustainable Chemistry & Engineering 6 (1):1256–64. doi:10.1021/acssuschemeng.7b03597.
  • Sreedhar, R., A. Varshney, and M. Dhanya. 2022. Sugarcane crop classification using time series analysis of optical and SAR sentinel images: A deep learning approach. Remote Sensing Letters 13 (8):812–21. doi:10.1080/2150704X.2022.2088254.
  • Srisruthi, S., N. Swarna, G. M. S. Ros and E. Elizabeth, “Sustainable agriculture using eco-friendly and energy efficient sensor technology,” 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2016, pp. 1442–46, doi: 10.1109/RTEICT.2016.7808070.
  • Stark, J., and S. Love. 2003. Potato Production Systems. Berlin/Heidelberg, Germany: Springer.
  • Suh, D., J. W. Lee, S. Choi, and Y. Lee. 2021. Recent applications of deep learning methods on evolution- and contact-based protein structure prediction. International Journal of Molecular Sciences 22 (11):6032. doi:10.3390/ijms22116032.
  • Suresha, A. M. October 2020. Machine Learning for mining weather patterns and weather forecasting. doi:10.13140/RG.2.2.22296.42243.
  • Su, W.-H., D.-W. Sun, and D.-W. Sun. 2019. Rapid determination of starch content of potato and sweet potato by using NIR hyperspectral imaging. Hortscience 38 (5–6):S806–823. doi:10.1080/07373937.2019.1593192.
  • Tamiminia, H., B. Salehi, M. Mahdianpari, C. M. Beier, D. J. Klimkowski and T. A. Volk, “Random forest outperformed convolutional neural networks for shrub willow above ground biomass estimation using multi-spectral UAS Imagery,” 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, pp. 8269–72, doi: 10.1109/IGARSS47720.2021.9553515.
  • Thimm, O., O. Bläsing, Y. Gibon, A. Nagel, S. Meyer, P. Krüger, J. Selbig, L. A. Müller, S. Y. Rhee, M. Stitt et al. 2004. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal: For Cell and Molecular Biology. 37(6):914–39. doi:10.1111/j.1365-313x.2004.02016.x.
  • Tian, X. Y., J. H. Aheto, J. W. Bai, C. Dai, Y. Ren, and X. Chang. 2021. Quantitative analysis and visualization of moisture and anthocyanins content in purple sweet potato by Vis–NIR hyperspectral imaging. Journal of Food Processing and Preservation 45 (2):e15128. doi:10.1111/jfpp.15128.
  • Tursi, A. 2019. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Research Journal 6 (2):962–79. doi:10.18331/BRJ2019.6.2.3.
  • Vamsi, T. S., S. K. Terlapu, M. V. Subbarao and C. Grandhi, “Crop protection and establishment of E-Farmers Market,” 2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T), 2022, pp. 1–4, doi: 10.1109/ICPC2T53885.2022.9777040.
  • Viljanen, N., E. Honkavaara, R. Näsi, T. Hakala, O. Niemeläinen, and J. Kaivosoja. 2018. A novel machine learning method for estimating biomass of grass swards using a photogrammetric canopy height model, images and vegetation indices captured by a drone. Agriculture 8 (5):70. doi:10.3390/agriculture8050070.
  • Wang, J. 2022. Protein sequence design by deep learning. Nature Computational Science 2 (7):416–17. doi:10.1038/s43588-022-00274-5.
  • Wang, Y., X. Dai, D. Fu, P. Li, and B. Du. 2022. PGD: A machine learning-based photosynthetic-related gene detection approach. BMC Bioinformatics 23 (1):183. https://doi.org/10.1186/s12859-022-04722-x.
  • Wang, Z., X. Peng, A. Xia, A. A. Shah, Y. Huang, X. Zhu, X. Zhu, and Q. Liao. 2022. Qiang Liao, the role of machine learning to boost the bioenergy and biofuels conversion. Bioresource Technology 343:126099. ISSN 0960-8524. https://doi.org/10.1016/j.biortech.2021.126099.
  • Wang, F., C. Wang, and S. Song. 2021. A study of starch content detection and the visualization of fresh-cut potato based on hyperspectral imaging. RSC Advances 11 (22):13636–43. doi:10.1039/D1RA01013A.
  • Wang, F., C. Wang, S. Song, S. Xie, and F. Kang. 2021. Study on starch content detection and visualization of potato based on hyperspectral imaging. Food Science & Nutrition 9 (8):4420–30. doi:10.1002/fsn3.2415.
  • Waseem, S., S. R. Imadi, A. Gul, and P. Ahmad. 2017. Oilseed crops present scenario and future prospects.
  • Wilhelm, C., J. Weinberg, and M. Kaltschmitt. 2014. Conversion steps in bioenergy production – analysis of the energy flow from photon to biofuel. Biofuels 5 (4):385–404. doi:10.1080/17597269.2014.981088.
  • Wu, Y., X. Zhang, Y. Xiao, and J. Feng. 2020. Attention neural network for water image classification under IoT environment, Appl. Applied Sciences 10 (3):030909. https://doi.org/10.3390/app10030909.
  • Xiao, Q., X. Bai, and Y. He. 2020. Rapid screen of the color and water content of fresh-cut potato tuber slices using hyperspectral imaging coupled with multivariate analysis. Foods 9 (1):94. doi:10.3390/foods9010094.
  • Xing, Y., Z. Zile, Y. Sun, M. Alikhani, and A. Baghban. 2021. A review on machine learning application in biodiesel production studies. International Journal of Chemical Engineering 2021:1–12. doi:10.1155/2021/2154258.
  • Xu, J.-X., J. Ma, Y.-N. Tang, W.-X. Wu, J.-H. Shao, W.-B. Wu, S.-Y. Wei, Y.-F. Liu, Y.-C. Wang, and H.-Q. Guo. 2020. Estimation of sugarcane yield using a machine learning approach based on UAV-LiDAR Data. Remote Sensing 12 (17):2823. doi:10.3390/rs12172823.
  • Yang, Z., J. Tian, Z. Wang, and K. Feng. 2022. Monitoring the photosynthetic performance of grape leaves using a hyperspectral-based machine learning model. The European Journal of Agronomy 140:126589. ISSN 1161-0301. doi:10.1016/j.eja.2022.126589.
  • Yang, P., Q. Zhao, and X. Cai. 2020. Machine learning based estimation of land productivity in the contiguous US using biophysical predictors. Environmental Research Letters 15 (7):074013. doi:10.1088/1748-9326/ab865f.
  • Yeasin, M., D. Haldar, S. Kumar, R. K. Paul, and S. Ghosh. 2022. Machine learning techniques for phenology assessment of sugarcane using conjunctive SAR and optical data. Remote Sensing 14 (14):3249. doi:10.3390/rs14143249.
  • Yuan, X., C. Chen, X. Lei, Y. Yuan, and R. Muhammad Adnan. 2018. Monthly runoff forecasting based on LSTM–ALO model. Stochastic Environmental Research and Risk Assessment: Research Journal 32 (8):2199–212. CrossRef. doi:10.1007/s00477-018-1560-y.
  • Zachary Wu, S. B. J. K., R. D. Lewis, B. J. Wittmann, H. Frances, and F. H. Arnold. 2019. Arnold Machine learning-assisted directed protein evolution with combinatorial libraries. Proceedings of the National Academy of Sciences 116 (18):8852–58. doi:10.1073/pnas.1901979116.
  • Zhang, W., Q. Chen, J. Chen, D. Xu, H. Zhan, H. Peng, J. Pan, M. Vlaskin, L. Leng, and H. Li. 2023, Feb. Machine learning for hydrothermal treatment of biomass: A review. Bioresource Technology 370:128547. ( Epub 2022 Dec 28. PMID: 36584720) doi:10.1016/j.biortech.2022.128547.
  • Zhang, X.-Y., Z. Huang, X. Su, A. Siu, Y. Song, D. Zhang, and Q. Fang. 2020. Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data. PLoS ONE 15 (2):e0228645. doi:10.1371/journal.pone.0228645.
  • Zhang, Z., M. Pope, N. Shakoor, R. Pless, T. C. Mockler, and A. Stylianou. 2022. Comparing deep learning approaches for understanding genotype × phenotype interactions in biomass sorghum. Frontiers in Artificial Intelligence 5:872858. doi:10.3389/frai.2022.872858.
  • Zheng, K., Y. Bo, Y. Bao, X. Zhu, J. Wang, and Y. Wang. 2021. A machine learning model for photorespiration response to multi-factors. Horticulturae 7 (8):207. doi:10.3390/horticulturae7080207.
  • Zhi, W., D. Feng, W. P. Tsai, G. Sterle, A. Harpold, C. Shen, and L. Li. 2021. From hydrometeorology to river water quality: Can a deep learning model predict dissolved oxygen at the continental scale? Environment Science and Technology 55 (4):2357–68. doi:10.1021/acs.est.0c06783.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.