115
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Insight into the thermodynamic and kinetic analysis of Tamarindus indica shell using thermogravimetric analysis

ORCID Icon, , , &
Pages 8737-8750 | Received 19 May 2023, Accepted 29 Jun 2023, Published online: 07 Jul 2023

References

  • Ağbulut, Ü., Sirohi, R., Lichtfouse, E., Chen, W. -H., Len, C., Show, P. L., Le, A. T., Nguyen, X. P., and Hoang, A. T. 2023. Microalgae bio-oil production by pyrolysis and hydrothermal liquefaction: Mechanism and characteristics. Bioresource Technology 376:128860. doi:10.1016/j.biortech.2023.128860.
  • Alves, J. L. F., J. C. G. da Silva, G. D. Mumbach, M. D. Domenico, A. Bolzan, R. A. F. Machado, and C. Marangoni. 2022. Evaluating the bioenergy potential of cupuassu shell through pyrolysis kinetics, thermodynamic parameters of activation, and evolved gas analysis with TG/FTIR technique. Thermochimica Acta 711:179187. doi:10.1016/j.tca.2022.179187.
  • Amulani, A., Nandanwar, T., Baskaran, K., Prakash, R., and Mohan, C. G. 2023. Characterization of tamarind biomass to substantiate the feasibility towards alternative fuel. Sustainable Energy Technologies and Assessments 56:103056. doi:10.1016/j.seta.2023.103056.
  • Brachi, P., V. Santes, and E. Torres-Garcia. 2021. Pyrolytic degradation of spent coffee ground: A thermokinetic analysis through the dependence of activation energy on conversion and temperature. Fuel 302:120995. doi:10.1016/j.fuel.2021.120995.
  • Chen, P., Hu, C., Gu, J., Lin, X., Yang, C., Leu, S. -Y., and Guan, L . 2022. Pyrolysis characteristics of tea oil camellia (Camellia oleifera Abel.) shells and their chemically pre-treated residues: Kinetics, mechanisms, product evaluation and joint optimization. Journal of Analytical and Applied Pyrolysis 164:105526. doi:10.1016/j.jaap.2022.105526.
  • Dong, R., Chen, F., Zhang, F., Yang, S., Liu, H., Wang, H., and Hu, J. 2022. A comprehensive evaluation on pyrolysis kinetics, thermodynamics, product properties and formation pathways of jatropha oil for high-value utilization. Fuel 313:122982. doi:10.1016/j.fuel.2021.122982.
  • Escalante, J., Chen, W. -H., Tabatabaei, M., Hoang, A. T., Kwon, E. E., Andrew Lin, K. -Y., and Saravanakumar, A . 2022. Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach. Renewable and Sustainable Energy Reviews 169:112914. doi:10.1016/j.rser.2022.112914.
  • Gözke, G. 2022. Kinetic and thermodynamic analyses based on thermogravimetric pyrolysis of watermelon seed by isoconversional and master plots methods. Renewable Energy 201:916–27. doi:10.1016/j.renene.2022.10.100.
  • Guo, X., Xu, Z., Zheng, X., Jin, X., and Cai, J. 2022. Understanding pyrolysis mechanisms of corn and cotton stalks via kinetics and thermodynamics. Journal of Analytical and Applied Pyrolysis 164:105521. doi:10.1016/j.jaap.2022.105521.
  • Hoang, A. T., Ong, H. C., Fattah, I. M. R., Chong, C. T., Cheng, C. K., Sakthivel, R., and Ok, Y. S. 2021. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology 223:106997. doi:10.1016/j.fuproc.2021.106997.
  • Hoang, A. T., Pandey, A., Huang Z., Luque, R., Ng, K. H., Papadopoulos, A. M., Chen, W. -H., Rajamohan, S., Hadiyanto, H., Nguyen, X. P., et al. 2022. Catalyst-Based Synthesis of 2, 5-Dimethylfuran from Carbohydrates as a Sustainable Biofuel Production Route. ACS Sustainable Chemistry & Engineering 10:3079–3115.
  • Hussain, M., Dendena Tufa, L., Yusup, S., and Zabiri, H. 2019. Thermochemical behavior and characterization of palm kernel shell via TGA/DTG technique. Materials Today: Proceedings 16:1901–08. doi:10.1016/j.matpr.2019.06.067.
  • Kader, M. A., Islam, M. R., Parveen, M., Haniu, H., and Takai, K. 2013. Pyrolysis decomposition of tamarind seed for alternative fuel. Bioresource Technology 149:1–7. doi:10.1016/j.biortech.2013.09.032.
  • Katnić, Đ., Marinović-Cincović, M., Porobić, S. J., Vujčić, I., Šaponjić, A., Sikirić, B., and Živojinović, D. 2022. Characterization and kinetics of thermal decomposition behavior of plum and fig pomace biomass. Journal of Cleaner Production 352:131637. doi:10.1016/j.jclepro.2022.131637.
  • Kaur, R., Gera, P., Jha, M. K., and Bhaskar, T. 2018. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresource Technology 250:422–28. doi:10.1016/j.biortech.2017.11.077.
  • Khan, S. 2015. Biomass as Renewable Energy. National Conference on Renewable Energy and Environment (NCREE-2015). Center for Alternative and Renewable Energy (CARE), IMS Engineering College Ghaziabad, India. 2.
  • Khan, A. S., Z. Man, M. A. Bustam, C. F. Kait, Z. Ullah, A. Nasrullah, M. I. Khan, G. Gonfa, P. Ahmad, N. Muhammad, et al. 2016. Kinetics and thermodynamic parameters of ionic liquid pretreated rubber wood biomass. Journal of Molecular Liquids 223:754–62. doi:10.1016/j.molliq.2016.09.012.
  • Kumar, M., Rai, D., Bhardwaj, G., Upadhyay, S. N., and Mishra, P. K. 2021. Pyrolysis of peanut shell: Kinetic analysis and optimization of thermal degradation process. Industrial Crops and Products 174:114128. doi:10.1016/j.indcrop.2021.114128.
  • Kuprianov, V. I., and P. Arromdee. 2013. Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: A comparative study. Bioresource Technology 140:199–210. doi:10.1016/j.biortech.2013.04.086.
  • Mamta, S., B. S, and S. Malhotra. 2015. Horticulture statistics at a Glance 2015.
  • Martins, F., C. Felgueiras, M. Smitkova, and N. Caetano. 2019. Analysis of fossil fuel energy consumption and environmental impacts in European Countries. Energies 12 (6):964. doi:10.3390/en12060964.
  • Mishra, G., and T. Bhaskar. 2022. Insights into the decomposition kinetics of groundnut shell: An advanced isoconversional approach. Renewable Energy 196:1–14. doi:10.1016/j.renene.2022.06.107.
  • Mishra, G., J. Kumar, and T. Bhaskar. 2015. Kinetic studies on the pyrolysis of pinewood. Bioresource Technology 182:282–88. doi:10.1016/j.biortech.2015.01.087.
  • Mohammed, H. I., Garba, K., Ahmed, S. I., and Abubakar, L. G. 2022. Thermodynamics and kinetics of Doum (Hyphaene thebaica) shell using thermogravimetric analysis: A study on pyrolysis pathway to produce bioenergy. Renewable Energy 200:1275–85. doi:10.1016/j.renene.2022.10.042.
  • Murugan, P. C., and S. Joseph Sekhar. 2021. Investigation on the yield of producer gas from tamarind shell (Tamarindus Indica) as feedstock in an Imbert type biomass gasifier. Fuel 292:120310. doi:10.1016/j.fuel.2021.120310.
  • Nguyen, X. P., A. T. Hoang, A. I. Ölçer, D. Engel, V. V. Pham, and S. K. Nayak. 2021. Biomass-derived 2,5-dimethylfuran as a promising alternative fuel: An application review on the compression and spark ignition engine. Fuel Processing Technology 214:106687. doi:10.1016/j.fuproc.2020.106687.
  • Parthasarathy, P., K. S. Narayanan, and L. Arockiam. 2013. Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis. Biomass and Bioenergy 58:58–66. doi:10.1016/j.biombioe.2013.08.004.
  • Pitchai, T., Babu, R., Ramanujam, S., and Kuttalam, I. 2019. Thermogravimetric and kinetic study of pyrolysis of corn cob biomass. Journal of Renewable Energy and Environment 6 (4):35–40.
  • Ranaivoson, T., Brinkmann, K., Rakouth, B., and Buerkert, A. 2015. Distribution, biomass and local importance of tamarind trees in south-western Madagascar. Global Ecology and Conservation 4:14–25. doi:10.1016/j.gecco.2015.05.004.
  • Rasool, T., and S. Kumar. 2020. Kinetic and thermodynamic evaluation of pyrolysis of plant biomass using TGA. Materials Today: Proceedings 21:2087–95. doi:10.1016/j.matpr.2020.01.328.
  • Raza, M., B. Abu-Jdayil, and A. Inayat. 2023. Pyrolytic kinetics and thermodynamic analyses of date seeds at different heating rates using the Coats–Redfern method. Fuel 342:127799. doi:10.1016/j.fuel.2023.127799.
  • Rueda-Ordóñez, Y. J., Arias-Hernández, C. J., Manrique-Pinto, J. F., Gauthier-Maradei, P., and Bizzo, W. A. 2019. Assessment of the thermal decomposition kinetics of empty fruit bunch, kernel shell and their blend. Bioresource Technology 292:121923. doi:10.1016/j.biortech.2019.121923.
  • Sakthivel, R., Ramesh, K., Joseph John Marshal, S., and Sadasivuni, K. K. 2019. Prediction of performance and emission characteristics of diesel engine fuelled with waste biomass pyrolysis oil using response surface methodology. Renewable Energy 136:91–103. doi:10.1016/j.renene.2018.12.109.
  • Sbirrazzuoli, N. 2020. Interpretation and physical meaning of kinetic parameters obtained from isoconversional kinetic analysis of polymers. Polymers 12 (6):1280. doi:10.3390/polym12061280.
  • Seth, R., R. Seth, and S. Bajpai. 2015. Need of biomass energy in india. Progress in Science and Engineering Research Journal 3:13–17.
  • Shen, T., Zhang, F., Yang, S., Wang, Y., Liu, H., Wang, H., and Hu, J. 2023. Comprehensive study on the pyrolysis process of chestnut processing waste (chestnut shells): Kinetic triplet, thermodynamic, in-situ monitoring of evolved gasses and analysis biochar. Fuel 331:125944. doi:10.1016/j.fuel.2022.125944.
  • Singh, R. K., Pandey, D., Patil, T., and Sawarkar, A. N. 2020. Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresource Technology 310:123464. doi:10.1016/j.biortech.2020.123464.
  • Soria-Verdugo, A., E. Goos, and N. García-Hernando. 2015. Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the distributed activation energy model. Fuel Processing Technology 134:360–71. doi:10.1016/j.fuproc.2015.02.018.
  • Srihari, S., and S. Thirumalini. 2017. Investigation on reduction of emission in PCCI-DI engine with biofuel blends. Renewable Energy 114:1232–37. doi:10.1016/j.renene.2017.08.008.
  • Torres-García, E., L. F. Ramírez-Verduzco, and J. Aburto. 2020. Pyrolytic degradation of peanut shell: Activation energy dependence on the conversion. Waste Management 106:203–12. doi:10.1016/j.wasman.2020.03.021.
  • Tuan Hoang, A., and V. Viet Pham. 2021. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renewable and Sustainable Energy Reviews 148:111265. doi:10.1016/j.rser.2021.111265.
  • Xiong, S., Zhuo, J., Zhang, B., and Yao, Q. 2013. Effect of moisture content on the characterization of products from the pyrolysis of sewage sludge. Journal of Analytical and Applied Pyrolysis 104:632–39. doi:10.1016/j.jaap.2013.05.003.
  • Zhang, C., Li, S., Ouyang, S., Tsang, C. -W., Xiong, D., Yang, K., Zhou, Y., and Xiao, Y. 2021. Co-pyrolysis characteristics of camellia oleifera shell and coal in a TGA and a fixed-bed reactor. Journal of Analytical and Applied Pyrolysis 155:105035. doi:10.1016/j.jaap.2021.105035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.