45
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Thermogravimetric analysis of high- and low-density sawdust under nitrogen gas atmosphere

&
Pages 8703-8715 | Received 18 Jan 2023, Accepted 29 Jun 2023, Published online: 04 Jul 2023

References

  • Akinrinola, F. S., L. I. Darvell, J. M. Jones, A. Williams, and J. A. Fuwape. 2014. Characterization of selected Nigerian biomass for combustion and pyrolysis applications. Energy and Fuels 28 (6):3821–32. doi:10.1021/ef500278e.
  • Ashaari, Z. 2017. Low-density wood from poor to excellent . Inaugural book final draft, University Putra Malaysia.
  • Baldan, Y., A. Fernandez, A. R. Urrutia, M. P. Fabani, R. Rodriguez, and G. Mazza. 2020. Non-isothermal drying of bio-wastes: Kinetics analysis and determination of effective moisture diffusivity. Journal of Environmental Management 262:110348. doi:10.1016/j.jenvman.2020.110348.
  • Baysal, E., I. Deveci, T. Turkoglu, and H. Toker. 2017. Thermal analysis of oriental beech sawdust treated with some commercial wood preservatives. Maderas Ciencia y tecnología 3 (ahead). 10.4067/S0718-221X2017005000028.
  • Chen, D., J. Zhou, and Q. Zhang. 2014. Effects of heating rate on slow pyrolysis behavior, kinetics parameters and products properties of moso bamboo. Bioresource Technology 169:313–19. doi:10.1016/j.biortech.2014.07.009.
  • Ding, Y., O. A. Ezekoye, S. Lu, and C. Wang. 2016. Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Conversion and Management 120:370–77. doi:10.1016/j.enconman.2016.05.007.
  • Elehinafe, F. B., O. B. Okedere, B. Fakinle, and J. A. Sonibare. 2017. Assessment of sawdust of different wood species in Southwestern Nigeria as source of energy. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 10:84–89. doi:10.1080/15567036.2017.1384869.
  • Garba, M. U., Musa, M., Azare, P. E., Ishaq, K., Onoduku, U. S., and Y. S. Mohammad. 2016. Characterization and ash chemistry of selected Nigerian coals for solid fuel combustion. Petroleum and Coal 58 (6):646–654.
  • Gu, X., C. Liu, X. Jiang, X. Ma, L. Li, K. Cheng, and Z. Li. 2014. Thermal behavior and kinetics of the pyrolysis of the raw/steam exploded poplar wood sawdust. Journal of Analytical and Applied Pyrolysis 106:177–86. doi:10.1016/j.jaap.2014.01.018.
  • Kawale, H. D., and N. Kishore. 2020. Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production. Energy 203:117921. doi:10.1016/j.energy.2020.117921.
  • Larinde, S. L., A. A. Erakhrumen, and D. Ojoh. 2018. Utilisation of wood residues from a cluster of sawmills at Illabuchi by inhabitants of some adjoining communities in Port-Harcourt, Nigeria. Journal of Research in Forestry, Wildlife & Environment 10:4. http://www.ajol.info/index.php/jrfwe.
  • Luangkiattikhun, P., C. Tangsathitkulchai, and M. Tangsathitkulchai. 2008. Non-isothermal thermogravimetric analysis of oil-palm solid wastes. Bioresource Technology 99 (5):986–97. doi:10.1016/j.biortech.2007.03.001.
  • Mani, T., P. Murugan, J. Abedi, and N. Mahinpey. 2010. Pyrolysis of wheat straw in a thermogravimetric analyzer: Effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chemical Engineering Research and Design 88 (8):952–58. doi:10.1016/j.cherd.2010.02.008.
  • Mishra, R. K., and K. Mohanty. 2017. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bio-Resource Technology S0960-8524 (17):32162–64. doi:10.1016/j.biortech.
  • Moon, C., Y. Sung, S. Ahn, T. Kim, G. Choi, and D. Kim. 2013. Effect of blending ratio on combustion performance in blends of biomass and coals of different ranks. Experimental Thermal and Fluid Science 47:232–40. doi:10.1016/j.expthermflusci.2013.01.019.
  • Mureddu, M., F. Dessi, A. Orsini, F. Ferrara, and A. Pettinau. 2017. Air- and oxygen-blown characterization of coal and biomass by thermogravimetric analysis. Fuel 212:626–37. doi:10.1016/j.fuel.2017.10.005.
  • Nyombi, A., M. Williams, and R. Wessling. 2018. Determination of kinetics parameters and thermodynamic properties for ash (Fraxinus) wood sawdust slow pyrolysis by thermogravimetric analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1556–7230. doi:10.1080/15567036.2018.1502846.
  • Olatunji, O. O., S. A. Akinlabi, M. P. Mashinini, S. O. Fatoba, and O. O. Ajayi. 2018. Thermo-gravimetric characterization of biomass properties: A review. IOP Conference Series: Materials Science and Engineering 423:012175. doi:10.1088/1757-899X/423/1/012175.
  • Owoyemi, J., H. Zakariya, and I. Elegbede. 2016. Sustainable wood waste management in Nigeria. Environmental & Socio-Economic Studies 4 (3):1–9. doi:10.1515/environ-2016-0012.
  • Park, Y., J. Kim, S. Kim, and Y. Park. 2009. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor. Bioresource Technology 100 (1):400–05. doi:10.1016/j.biortech.2008.06.040.
  • Rogers, J. N., B. Stokes, J. Dunn, H. Cai, M. Wu, Z. Haq, and H. Baumes. 2017. An assessment of the potential products and economic and environmental impacts resulting from a billion ton bioeconomy. Biofuels, Bioproducts and Biorefining 11 (1):110–28. doi:10.1002/bbb.1728.
  • Saxena, R. C., D. K. Adhikari, and H. B. Goyal. 2009. Biomass-based energy fuel through biochemical routes: A review. Renewable & Sustainable Energy 13 (1):167–78. doi:10.1016/j.rser.2007.07.011.
  • Skreiberg, A., O. Skreiberg, J. Sandquist, and L. Sorum. 2011. TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel Energy 90 (6):2182–97. doi:10.1016/j.fuel.2011.02.012.
  • Stafan, A. Q., and W. B. Barry. 2015. Environmental and health impacts of a policy to phase out nuclear power in Sweden. Energy Policy 84:1–10. doi:10.1016/j.enpol.2015.04.023.
  • Torres-Sciancalepore, R., A. Fernandez, D. Asensio, M. Riveros, M. P. Fabani, G. Fouga, R. Rodriguez, and G. Mazza. 2022. Kinetics and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds. Energy Conversion & Management 252:115076. doi:10.1016/j.enconman.2021.115076.
  • Utama, Z. I., D. A. Himawanto, and D. D. Tjahjana. 2019. Slow pyrolysis of Tectona Grandis and Albizia Chinensis sawdust with thermogravimetry analysis. AIP conference proceedings 9–11, 030080. 10.1063/1.5098255.
  • Wang, B., Y. Li, J. Zhou, Y. Wang, X. Tao, X. Zhang, and W. Song. 2021. Thermogravimetric and kinetic analysis of high-temperature thermal conversion of Pine Wood Sawdust under CO2/Ar. Energies 14 (17):5328. doi:10.3390/en14175328.
  • Wnorowska, J., S. Ciukaj, and S. Kalisz. 2021. Thermogravimetric analysis of solid biofuels with additive under air atmosphere. Energies 14 (8):2257. doi:10.3390/en14082257.
  • Yang, Z., S. Zhang, L. Liu, X. Li, H. Chen, H. Yang, and X. Wang. 2012. Combustion behaviors of tobacco stem in a thermogravimetric analyzer and a pilot-scale fluidized bed reactor. Bioresource Technology 110:595–602. doi:10.1016/j.biortech.2011.12.119.
  • Yuzbasi, N. S., and N. Selçuk. 2011. Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR. Fuel Processing Technology 92 (5):1101–08. doi:10.1016/j.fuproc.2011.01.005.
  • Zalazar-Garcia, D., A. Fernandez, L. Rodriguez-Ortiz, E. Torres, A. Reyes-Urrutia, M. Echegaray, R. Rodriguez, and G. Mazza. 2022. Exergo-ecological analysis and life cycle assessment of agro-wastes using a combined simulation approach based on Cape-Open to Cape-Open (COCO) and SimaPro free-software. Renewable Energy 201:60–71. doi:10.1016/j.renene.2022.10.084.
  • Zephania, C., S. Mahir, and J. Geoffrey. 2014. Thermal characterization of pine sawdust as energy source feedstock. Journal of Energy Technologies and Policy 4:4. https://www.iiste.org/Journals/index.php/JETP/article/view/12413.
  • Zhang, X., H. Deng, X. Hou, R. Qiu, and Z. Chen. 2019. Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions. Renewable Energy 142:284–94. doi:10.1016/j.renene.2019.04.115.
  • Zhou, C., G. Liu, X. Wang, and C. Qi. 2016. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage. Bioresource Technology 218:418–27. doi:10.1016/j.biortech.2016.06.134.
  • Zhou, L., T. Luo, and Q. Huang. 2019. Co-pyrolysis characteristics and kinetics of coal and plastic blends. Energy Conversion & Management 50 (3):705–10. doi:10.1016/j.enconman.2008.10.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.